

HYDROGEOLOGICAL IMPACT ASSESSMENT REPORT

Nobleton Wells 2 & 5 Upgrades, The Regional Municipality of York, ON

Project #: 23-0358 Prepared for: ETO Engineering Date: May 23, 2025

Report Version: 03

6415 Northwest Drive Units 37-40 Mississauga, ON L4V 1X1 envisionconsultants.ca

May 23, 2025

ETO Engineering 9030 Leslie Street, Unit 300 Richmond Hill, ON L4B 1G2

Attention: Johnny Pang, P.Eng., PMP

SUBJECT: HYDROGEOLOGICAL IMPACT ASSESSMENT REPORT, NOBLETON WELLS 2 & 5 UPGRADES, THE REGIONAL MUNICIPALITY OF YORK, ON

EnVision Consultants Ltd. is pleased to present the enclosed Hydrogeological Impact Assessment Report report for the above-noted property. The report describes the interpreted hydrogeological conditions based on our assessment and provides conclusions for your consideration. This version of the report has updated to the most current design, and has been expanded to include both the Well 5 Site, and the Well 2 Site. The previous version should be deleted and replaced with this version.

We thank you for utilizing EnVision for this assignment. If there are any questions regarding the enclosed report, please do not hesitate to contact us.

Yours sincerely,

Rob Byers, P.Geo., Senior Hydrogeologist rbyers@envisionconsultants.ca

QUALITY MANAGEMENT

ISSUE	FIRST ISSUE	REVISION 1	REVISION 2
PROJECT NUMBER	23-0358	23-0358	23-0358
PROJECT REFERENCE	Hydrogeological Impact Assessment Report, Nobleton Wells 2 & 5 Upgrades, The Regional Municipality of York, ON	Hydrogeological Impact Assessment Report, Nobleton Wells 2 & 5 Upgrades, The Regional Municipality of York, ON	Hydrogeological Impact Assessment Report, Nobleton Wells 2 & 5 Upgrades, The Regional Municipality of York, ON
VERSION NO.	01	02	03
REMARKS	Draft Report	Draft Report	Draft Report
PREPARED BY	Sam Harding	Sam Harding	Sam Harding
SIGNATURE	DRAFT	DRAFT	DRAFT
REVIEWED BY	Rob Byers	Rob Byers	Rob Byers
SIGNATURE	DRAFT	DRAFT	DRAFT
DATE	December 13, 2023	October 11, 2024	May 23, 2025

The original of this digital file will be kept by EnVision for a period of not less than 10 years. As the digital file transmitted to the intended recipient is no longer under the control of EnVision, its integrity cannot be assured. As such, EnVision does not guarantee any modifications made to this digital file subsequent to its transmission to the intended recipient

TABLE OF CONTENTS

1.	Intro	duction	6
	1.1.	Objectives and Scope of Work	6
	1.2.	Site Description	7
	1.3.	Policy and Regulatory Overview	8
2.	Regi	onal Setting	9
	2.1.	Geology	9
	2.2.	Hydrogeological Setting	9
3.	Site	Setting	14
	3.1.	Topography and Drainage	14
	3.2.	Surface Water Features	14
	3.3.	Nobleton Groundwater Supply Well Summary	14
	3.4.	Monitoring Well Network	15
4.	Field	Investigation	17
	4.1.	Borehole Drilling	17
	4.2.	Soil Descriptions – Nobleton Well 2	17
	4.3.	Subsurface Conditions - Nobleton Well 5	
	4.4.	Monitoring Well Installation	19
	4.5.	Groundwater Level Monitoring	19
	4.6.	Hydraulic Conductivity Assessment	
	4.7.	Groundwater Quality Assessment	
5.	Cons	struction Dewatering Assessment	24
	5.1.	Project Overview	24
	5.2.	Dewatering Analysis	26
	5.3.	Construction Dewatering Rates	
	5.4.	Groundwater Control	
	5.5.	Dewatering Induced Zone of Influence	
	5.6.	MECP Water Taking Permit (EASR/PTTW)	
	5.7.	Discharge Permitting and Treatment	
6.	Impa	act Assessment for Dewatering Applications	
Hyd Nob	rogeolo leton W	gical Impact Assessment Report ells 2 & 5 Upgrades, The Regional Municipality	EnVision Consultants Ltd. Project #: 23-0358

	6.1.	Source Water Protection Areas	35
	6.2.	Surface Water Impacts	36
	6.3.	Infrastructure Impacts	36
	6.4.	Water Supply Well Impacts	37
	6.5.	Contaminant Migration During Dewatering	37
	6.6.	Long-Term Drainage	37
	6.7.	Well Decommissioning (Ontario Regulation 903)	37
7.	Moni	toring and Mitigation	. 38
	7.1.	Construction Dewatering Monitoring	38
8.	Closi	ng	.42
	8.1.	Conclusions	42
	8.2.	Qualification of the Assessors	43
	8.3.	Certification and Signatures	43
	8.4.	Qualifier	43
9.	Refer	rences	.45

LIST OF TABLES (INCLUDED WITHIN THE REPORT)

Table 1-1: Project Area Information	7
Table 2-1: ERIS Summary of Potential Risks	12
Table 3-1: Active PTTW Summary	15
Table 4-1: Summary of Estimated K (Grain Size Relationships)	20
Table 4-2: Summary of K Value Ranges by Soil Unit	21
Table 4-3: Summary of in-Situ Single Well Response Testing	21
Table 4-4: Summary of Groundwater Exceedances Against York Region Storm/Sanitary Sewer D	ischarge 23

LIST OF FIGURES (ATTACHED TO THE REPORT)

Figure 1	Site Location Map
Figure 2	Wellhead Protection Area Mapping
Figure 3	Surficial Geology of the Study Area
Figure 4	Water Well Record
Figure 5	Well 2 Facility Borehole Location Plan
Figure 6	Well 5 Facility Borehole Location Plan
Figure 7	Well 2 Facility Cross Section A-A'
Figure 8	Well 5 Facility Cross Section B-B'
Figure 9	Groundwater Elevations – Well 2 Plan (May 2025)
Figure 10	Groundwater Elevations – Well 5 Plan (May 2025)

LIST OF APPENDICES

- APPENDIX A: MECP Well Records
- APPENDIX B: Borehole Logs
- APPENDIX C: Groundwater Level Monitoring
- **APPENDIX D:** Grain Size Analysis
- **APPENDIX E:** In-Situ Single Well Response Tests
- **APPENDIX F:** Laboratory Certificate of Analysis
- **APPENDIX G:** Construction Dewatering Analysis

EnVision Consultants Ltd. (EnVision) was retained by ETO Engineering (the 'Client') to conduct a hydrogeological impact assessment in support of proposed facility upgrades at the Nobleton Well 2 and Well 5 locations. The Well 2 facility location is identified by the municipal address 22 Faris Avenue, Township of King, ON. The Well 5 facility location is identified by the municipal address 12860 Highway 27, Nobleton, ON. It is our understanding that this assessment has been requested to support the proposed capacity and treatment upgrades for the two facilities.

The scope of work for the geo-environmental engineering services provided herein is outlined in ETO Engineering's request for The Regional Municipality of York's quotation entitled "Preliminary Design, Detailed Design, Contract Administration and Site Inspection Services for The Nobleton Wells 2 and 5 Upgrades", Reference No. RFPC-738-22. The scope of field investigations was further amended in collaboration with the Client as documented in email communications between September 15th and October 13th, 2023.

Geo-environmental soil characterization studies and geotechnical studies were also performed for this project, and those findings are provided in separate reports.

Review of the design drawings provided by the Client indicates that the proposed upgrades at the two sites consist of the following:

- Nobleton Well 2 Construction of a generator pad, removal of a chlorine contact tank and associated linear utilities, and valve chamber installation.
- Nobleton Well 5 Construction of a treatment plant building and a generator pad, as well as watermain and sanitary sewer installations.

The location of the two facilities, together with a 500-m buffer around the properties, representing the 'Study Area' are presented on the attached Figure 1.

1.1. OBJECTIVES AND SCOPE OF WORK

The objective of this hydrogeological investigation is to characterize the geological and hydrogeological conditions at the Site and Study Area to:

- Review soil and groundwater data to understand any constraints to the project goals;
- Estimate the need for groundwater control during construction;
- Assess potential dewatering rates to determine the required permitting associated with water takings as per Ontario Water Resources Act;
- Assess any short- or long-term impacts on groundwater resources from the construction activities;
- Review mitigation measures to protect groundwater resources during the construction work; and,
- Determine management options for the handling of any groundwater collected and discharged during construction.

1.2. SITE DESCRIPTION

1.2.1. Well 2 Location

The site is located on the north side of Faris Avenue, approximately 50 m west of the intersection of Wellington Street and Faris Avenue in a mixed residential and commercial area in the Community of Nobleton, Township of King. The site is rectangular in shape with approximately 15 m of frontage along Faris Avenue, occupying an area of approximately 0.14 ha (0.35 acres). The site is currently comprised of manicured grass, trees, and a single-story well facility with an associated driveway. Additional information on the property is presented in *Table 1-1* below.

Table 1-1: Well 2 Project Area Information

CRITERION	PHASE ONE PROPERTY INFORMATION
MUNICIPAL ADDRESS(S)	22 Faris Avenue, Nobleton, Ontario
PROPERTY IDENTIFICATION NUMBER(S) (PIN)	03352-0130
PROPERTY OWNER(S)	The Regional Municipality of York 17250 Yonge Street, Newmarket, ON L3Y 6Z1
GEOGRAPHICAL COORDINATES	608,018 m E 4,861,718 m N
QUATERNARY WATERSHED BOUNDARY	Humber River

1.2.2. Well 5 Location

The Well 5 Site is currently comprised of manicured grass, trees, and a single-story well facility and associated driveway. It is located on the west side of Highway 27, approximately 415 m south of the intersection of Highway 27 and King Road. The Site is located in a mixed commercial, community, agricultural, and residential area in the Community of Nobleton, Township of King. The Site is irregular in shape with approximately 110 m of frontage along Highway 27, occupying an area of approximately 1.12 ha (2.76 acres). Additional information on the property is presented in *Table 1-2* below.

Table 1-2: Project Area Information

CRITERION	PROJECT AREA INFORMATION
MUNICIPAL ADDRESS(S)	12860 Highway 27, Nobleton, Ontario
PROPERTY IDENTIFICATION NUMBER(S) (PIN)	03351-0054 (LT)
PROPERTY OWNER(S)	The Regional Municipality of York 17250 Yonge Street, Newmarket, ON L3Y 6Z1

CRITERION	PROJECT AREA INFORMATION
GEOGRAPHICAL COORDINATES	608,115 m E 4,861,432 m N
QUATERNARY WATERSHED BOUNDARY	Humber Watershed

1.3. POLICY AND REGULATORY OVERVIEW

The Study Area falls within the Toronto Regional Conservation Authority Regulated Area (Toronto and Region Conservation Authority, 2022) and a review of the Source Water Protection Policy areas indicates the Sites both are situated within the Toronto Source Protection Area, Wellhead Protection Area (WHPA) A with a score of 10, as highlighted on Figure 2. The facility does not fall within any intake protection zones and is not considered a significant groundwater recharge area (Ministry of the Environment, Conservation and Parks, 2021). Areas within the Study Area do intersect a highly vulnerable aquifer mapped area. *Table 1-3* summarizes the relevant source water and regulated area mapping for the Site's and Study Area.

SITE LOCATION	WELLHEAD PROTECTION AREA	HIGHLY VULNERABLE AQUIFER	SIGNIFICANT GROUNDWATER RECHARGE AREA	TRCA REGULATION MAPPING AREA
WELL 2	A – Score – 10	Site – No Study Area - Yes	No	Site- Yes Study Area - Yes
WELL 5	A – Score – 10	Site – No Study Area - Yes	No	Site – No Study Area – Yes

Table 1-3: Summary of Source Water Protection Area and Regulation Area Mapping

2. REGIONAL SETTING

2.1. GEOLOGY

The Study Area is situated within the physiographic region identified as the South Slope, which is an area of land that represents the southern flank of the Oak Ridges Moraine landform. In the area of the Site, the South Slope is comprised of successive layers of glacial material deposited during ice advance and retreat cycles.

2.1.1. Overburden Geology

A review of the public geological mapping of the Study Area indicated that the surficial material consists of glaciolacustrine deposits of clay to silt-textured till (Ministry of Northern Development, Mines and Forestry, 2013). Figure 3 highlights the surficial geology of the Study Area.

2.1.2. Bedrock Geology

Bedrock mapping of the Study Area identifies the bedrock as the Georgian Bay formation; a mix of shale, siltstone, dolostone and limestone (Sharpe, 1980). The depth to bedrock is expected at more than 30 meters below the ground surface (m BGS) and is not considered hydrogeologically significant to the Site.

2.2. HYDROGEOLOGICAL SETTING

2.2.1. Study Area Review of MECP Well Records

EnVision reviewed the online Ministry of the Environment, Conservation and Parks (MECP) Water Well Record WWR information system (Ministry of Environment, Conservation and Parks, 2018) to determine the number and reported use of water wells present within the Study Area.

The MECP WWR database indicated that there are one hundred and sixteen (116) water wells in the Study Area. Of the well records returned in the search, forty-five (45) were classified as abandoned/unknown, forty-six (46) were classified as observation/monitoring/test holes and twenty five (25) were classified as water supply wells.

Of the water supply wells pulled from the database, four (4) wells were classified as commercial, three (3) wells were listed as municipal, one (1) was listed as public, and seventeen (17) were listed for domestic use.

The depth of the wells ranged from 1.68 to 116.13 m BGS. Of the wells classified as being used for water supply, the depths ranged from 2.74 to 111.86 m BGS. The results of this search have been plotted in Figure 4 and a summary of the well records has been tabulated in Appendix A.

2.2.2. Hydrostratigraphy

Based on a review of the public records, including a 2018 background hydrogeological assessment of the study area performed by Palmer Environmental Consulting Group, the stratigraphic sequence below the Project Area is anticipated to consist of the following general sequence:

- Fill materials of various consistency and thickness;
- Halton Till;
- Oak Ridges Aquifer Complex (ORAC);
- Newmarket Till;
- Thorncliffe Formation;
- Sunnybrook Drift;
- Scarborough Formation; and,
- Bedrock Georgian Bay Formation.

The primary water bearing formation across the Study Area is expected to be the Oak Ridges Aquifer Complex (ORAC), Thorncliffe Formation, and Scarborough Formation. In these formations, continuous layers of fine to medium sand are encountered. The onsite and nearby municipal wells supply water to area residents that is extracted from the lower lying Scarborough Formation.

Groundwater flow in these units is influenced by topography and travels horizontally toward Lake Ontario. In addition, groundwater is also known to be encountered within the fractured till material that is found near the surface across the Study Area. Within the Halton Till, groundwater flow in the horizontal direction is constricted due to low permeability, however within weathered or highly fractured till, significant flow within discontinuous sand or silt lenses is possible, however this would be on a local scale.

2.2.3. Permit to Take Water and Construction Dewatering EASR Search

The MECP maintains an online database and GIS mapping service that contains all registered Permit to Take Water and Construction Dewatering EASR filings (Ministry of the Environment, 2018). A review of this service indicates that the following activities are currently reported for the Study Area.

- Water Taking PTTW Issued for municipal water supply, 14 Royal Ave Lot 6 Concession 8, 22 Faris Ave Lot 5, 12860 Hwy 27 Lot 4, King, Onratio (total permitted volume of 4,460,000 L/day)
- Water Taking PTTW Expired for a dugout pond at lot 3, 4, Concession 8, King, Ontario (total permitted volume of 3,273,000 L/day)
- Water Taking PTTW Expired for pumping station sump, STP sump, wetland well points, sewer line sumps lot 5,6,2, Concession 8,10,11, King, Ontario (total permitted volume of 1,584,000 L/day)

Based on this review, the surrounding areas, have required temporary water taking permits for construction dewatering activities.

2.2.4. ERIS Summary (Well 2)

The ERIS report for the Well 2 Site showed 151 records within the 250m search area. Twelve (12) of the records were identified within the site area.

Table 2-1: Summary of ERIS Report for Well 2 Site and Study Area

CRITERION	SUMMARY OF RECORDS REVIEW RESULTS
RECORDS OF ENVIRONMENTAL INCIDENTS, ORDERS, OFFENCES, SPILLS, DISCHARGES OF CONTAMINANTS, OR INSPECTIONS	 The ERIS report did not identify any records of incidents or spills for the Phase One Property. Forty-five (45) records pertaining to incidents and/or releases at properties within the Study Area were identified, including: Various spills associated with vehicles at the intersection of King Street and Highway 27; and, In January 2012 and March 2017, gasoline spills were identified at United Petroleum Transport, located approximately 165 m northeast of the Site at 12990 Highway 27. In 2012, the spill was identified as a leak and no volume was included in the record. In 2017, the spill was identified to have occurred due to overflow by human error and 10 L of gasoline was spilled. The remainder of the incident and spill records pertained to pipeline strikes resulting in the release of natural gas to air, which were not anticipated to have impacted the environmental quality of the Phase One Property and are therefore not listed herein.
WASTE MANAGEMENT RECORDS, INCLUDING CURRENT AND HISTORICAL WASTE STORAGE LOCATIONS, O. REG. 347 WASTE GENERATOR / RECEIVER SUMMARY RECORDS, AND MECP WASTE DISPOSAL INVENTORY	 The ERIS Report did not identify Waste Receiver Records for the Phase One Property or properties within the Study Area. One (1) O. Reg. 347 Waste Generator Summary Records was identified for the Phase One Property, as summarized below: CH2M Hill Ltd., an engineering company, was registered at 22 Faris Avenue for the generation of other specified inorganics as of July 2022. The ERIS report identified eleven (11) O. Reg. 347 Waste Generator Summary Records pertaining to two (2) properties located within the Study Area, including: Suncor Energy Products, located at 12990 Hwy 27, approximately 190 m northeast of the Site, was registered for the generation, use, and/or storage of light fuels and oil skimmings and sludges in 2014 and 2021. Due to distance from the Phase One Property, location relative to the inferred groundwater flow direction, and the nature of waste products identified, the remaining property identified in the Waste Generator database was not anticipated to have impacted the environmental quality of the Phase One Property and is therefore not listed herein. The ERIS report did not identify records pertaining to the Phase One Property and Study Area with regards to large or small scale, active or closed landfill sites.
RECORDS OF FUEL STORAGE MAINTAINED BY TECHNICAL STANDARDS AND SAFETY AUTHORITY (TSSA)	The ERIS report did not identify records of fuel storage for the Phase One Property. Thirty-two (32) records pertaining to six (6) properties within the Study Area were identified; however, due to distance from the Phase One Property, location relative to the inferred groundwater flow direction, and/or the nature of products identified, the records identified in these databases were not anticipated to have impacted the environmental quality of the Site and are therefore not listed herein.
OTHER COMMERCIAL AND INDUSTRIAL RECORDS	No additional commercial and/or industrial records were identified in the ERIS report for the Phase One Property. Two (2) records pertaining to one (1) property within the Study Area were identified in the Pesticide Register, as summarized below:

CRITERION SUMMARY OF RECORDS REVIEW RESULTS

.

Nobleton True Value Hardware, located approximately 70 m northeast of the Site at 6045 King Road, was licensed as a 'Limited Vendor'

2.2.5. ERIS Summary (Well 5)

The ERIS report for the Well 5 Site showed seventy-four (74) records within the 250m search area. Five (5) of those records is within the site area. *Table 2-1* presents a summary of the potential environmental risks associated with the site. The full ERIS report as well as more information on environmental risks associated with the site can be found in the EnVision Phase One report presented under a separate cover.

Table 2-2: ERIS Summary of Potential Risks

CRITERION	SUMMARY OF RECORDS REVIEW RESULTS
RECORDS OF ENVIRONMENTAL INCIDENTS, ORDERS, OFFENCES, SPILLS, DISCHARGES OF CONTAMINANTS, OR INSPECTIONS	The ERIS report did not identify any records of incidents or spills for the Site. Nineteen (19) records pertaining to incidents and/or releases at properties within the Study Area were identified; however, due to the nature of the products released, the incidents/releases identified in these databases were not anticipated to have impacted the environmental quality of the Site and are therefore not listed herein. An FOI request was submitted to the MECP, requesting information pertaining to environmental incidents, orders, offences, spills, discharges of contaminants, or inspections for the Site. A confirmation of receipt and response has not yet been received from the MECP regarding the FOI request. Notification will be provided if any records are identified by the MECP file search that may impact or change the findings of this report.
WASTE MANAGEMENT RECORDS, INCLUDING CURRENT AND HISTORICAL WASTE STORAGE LOCATIONS, O. REG. 347 WASTE GENERATOR / RECEIVER SUMMARY RECORDS, AND MECP WASTE DISPOSAL INVENTORY	The ERIS Report did not identify Waste Receiver Records or O. Reg. 347 Waste Generator Summary Records for the Site. The ERIS report identified nine (9) O. Reg. 347 Waste Generator Summary Records pertaining to one (1) property located within the Study Area; however, the records pertained to a medical clinic and are not anticipated to have impacted the environmental quality of the Site and are therefore not listed herein. Waste Receiver records were not identified for properties within the Study Area. Additionally, the ERIS report did not identify records pertaining to the Site or Study Area with regards to large or small scale, active or closed landfill sites.
RECORDS OF FUEL STORAGE MAINTAINED BY TECHNICAL STANDARDS AND	The ERIS report did not identify records of fuel storage for the Phase One Property or the surrounding Study Area. An information request was submitted to the TSSA pertaining to underground and aboveground fuel storage for the Phase One Property and adjacent properties. The TSSA response was received on April 11, 2023 and indicated that no records were identified pursuant to this request.

CRITERION	SUMMARY OF RECORDS REVIEW RESULTS
SAFETY AUTHORITY (TSSA)	
OTHER COMMERCIAL AND INDUSTRIAL RECORDS	No additional commercial and/or industrial records were identified in the ERIS report for the Phase One Property.
	Three (3) records pertaining to one (1) property within the Study Area were identified in the Pesticide Register, as summarized below:
	 Boynton Weed Spraying Limited, located at 12805 Highway 27, approximately 200 m southeast of the Phase One Property was licenced as an operator.

3. SITE SETTING

3.1. TOPOGRAPHY AND DRAINAGE

Based on the reviewed topographical details, the Well 2 Site Area features a minor gradient dipping towards the west and southwest. The Site reached its lowest elevation at approximately 263m ASL along the southwest corner of the site along the existing creek channel and its highest elevation point at about 266m ASL at the northeast corner of the site.

The Site grounds are covered by a mix of permeable and impermeable surfaces with surface water anticipated to be collected and conveyed through a swale to the western boundary where it is released to the existing creek.

Based on topographical survey, the Well 5 Site Area features a minor gradient dipping towards the south along Highway 27. The Site reached its lowest elevation at approximately 258m ASL on the south side of the property and its highest elevation point at about 263m ASL at the north side of the site.

The Site grounds are covered by mostly vegetation. The Site Area features asphalt driveway and a pumping facility which directs excess runoff to the south toward a large, vegetated area where it can infiltrate into the ground. There are also drainage culverts which collect run off along the eastern boundary of the Site Area along Highway 27.

3.2. SURFACE WATER FEATURES

Along the western boundary of the Well 2 property a small creek meanders from the north towards the south, entering a culvert below Faris Avenue where it enters a stormwater culvert for eventual discharge to the Humber River tributary southeast of Highway 27 and Parkview Dr. Based on the topographical details provided on the design drawing set, the creek is situated at approximately 263.0 to 263.5m ASL where it enters the property.

The south side of the Well 5 property features a small tributary of the Humber River flowing from west to east across the Site. The small creek crosses Highway 27 where it joins with the East Humber River near King Road and Concession Road 8 approximately 2.1km east of the Site. The East Humber River connects with the main Humber River just north of Highway 7 between Pine Valley Drive and Highway 27. The Humber River flows into Lake Ontario approximately 33km south of the Site.

3.3. NOBLETON GROUNDWATER SUPPLY WELL SUMMARY

The Village of Nobleton is provided drinking water from five (5) groundwater production wells, PW-2, PW-3, PW-5, and PW-7, with PW-6 serving as a backup. The wells are registered under MOECC PTTW# 6548-D55LZH issued October 13, 2022 and are managed by York Region (Ministry of the Environment, 2018). The PTTW is summarized in *Table 3-1* below.

SOURCE NAME	SOURCE TYPE	CATEGORY	MAX TAKEN PER MIN (L)	MAX TAKEN PER DAY (L)	ZONE/ EASTING/ NORTHING
PW-2	WELL DRILLED	MUNICIPAL SUPPLY	1,364	1,964,000	17 608009 E 4861746 N
PW-3	WELL DRILLED	MUNICIPAL SUPPLY	1,734	2,496,000	17 608342 E 4862013 N
PW-5	WELL DRILLED	MUNICIPAL SUPPLY	1,734	2,496,000	17 608241 E 4861438 N
PW-6	WELL DRILLED	MUNICIPAL SUPPLY	1,734	2,496,000	17 608152 E 4861416 N
PW-7	WELL DRILLED	MUNICIPAL SUPPLY	1,734	2,496,000	17 608346 E 4861996 N

Envision has reviewed the 2018 background hydrogeological assessment completed by Palmer Environmental Consulting Group INC. (Katanchi & Cole, 2018) to better understand the site setting.

Production Well PW-2 was completed in 1961 and is constructed as a 0.32 m diameter well, screened from elevation 155.5 to 161.5 m ASL. Production Well PW-5 was completed in 2012 and then was commissioned in 2015. The well is 0.32m in diameter and is drilled to approximately 100m below ground. Both wells are screened in a sand and gravel unit within the Scarborough Formation. The aquifer is locally confined by the Sunnybrook Drift and can be up to 60m thick within the bedrock valley located to the south-southwest and east of Nobleton running west to southeast and north to south.

3.4. MONITORING WELL NETWORK

The Region maintains a network of variable depth (shallow, and deep) groundwater monitoring wells across the Study Area, which target the ORAC, Thorncliffe Aquifer, and deeper lying Scarborough Aquifer formations. The purpose of the monitoring network is to conduct continuous monitoring of the shallow and deep groundwater elevations across the network, both within pumping wells and at nearby monitoring well locations.

Based on review of the Nobleton Well 5 site monitoring wells and water level records, **Well No. 4S**, screened 18.6m to 21.0m bgl appears to be shallowest and may be most representative of the Region's wells in determining the piezometric head that will act at the base of the proposed wet well excavation.

The water level records for Well 4S between Years 2022 and 2024 reveal piezometric total head almost identical to those measured by EnVision in our monitoring wells 5-1, 5-2 and 5-4 during our observation period, indicating that the silt unit into which the EnVision wells are screened communicates with the deeper medium grained sand and gravel formation into which Well 4S is screened. Based on the 4-year record of water level readings provided by the Region, it appears that a maximum piezometric level of about 255.0m was the highest recorded. Seasonal fluctuations across the period indicate water levels are highest in the spring months, and lowest during the early winter (November to December). The amplitude of several seasonal fluctuations are summarized below in *Table 3-2*:

YEAR	HIGH CONDITION (mm/elev.)	LOW CONDITION (mm/elev.)	FLUCTUATION (m)
2020	May – 255.3	Dec – 254.1	1.2
2021	May - 254.6	Sep – 253.7	0.9
2022	April - 254.9	Nov - 253.6	1.3
2023	Inconclusive	Dec – 254.0	NA
2024	May - 255.4	Jan - 254.1	1.3

Table 3-2: Summary of Well 4s Seasonal Fluctuations at Well 5 Facility

Review of the water level data from the other Region wells indicates that the hydraulic gradient at this site is downward.

4. FIELD INVESTIGATION

4.1. BOREHOLE DRILLING

The field investigation at the Well 2 site was carried out on December 6, 2023, which consisted of drilling three (3) boreholes (designated as BH2-1 to BH2-3) to depths ranging from 5.2m to 6.1m below the existing ground surface. Three (3) boreholes were completed as monitoring wells.

The field investigation at the Well 5 site was carried out between October 19 and October 20, 2023, which consisted of drilling six (6) boreholes (designated as BH5-1 to BH5-6) to depths ranging from 1.5m to 9.7m below the existing ground surface. Three (3) boreholes were completed as monitoring wells.

Borehole log sheets and details are attached in Appendix B. The approximate location of boreholes and monitoring wells are highlighted in Figure 5, and Figure 6.

4.2. SOIL DESCRIPTIONS – NOBLETON WELL 2

In summary, the subsurface conditions encountered in the boreholes consisted of topsoil or flexible pavement structure underlain by fill material, generally consisting of loose to compact sand and gravel to gravelly sand, and firm to very stiff silty clay to clayey silt. Native overburden deposits consist of very stiff to hard silty clay to clayey silt till and compact to dense silty sand. A lithological profile interpretation based on the borehole information has been prepared and presented in Figure 7.

4.2.1. Topsoil

A 205 mm thick layer of topsoil was encountered at borehole BH2-2. Topsoil thickness will vary between and beyond the borehole locations.

4.2.2. Flexible Pavement

Boreholes BH2-1 and BH2-3 were advanced through the pavement structure of the driveway to the property located at 22 Faris Avenue. Two asphalt cores were also collected from the driveway pavement. A pavement structure consisting of 105mm to 130mm asphaltic concrete, underlain by 350mm to 355mm of sand and gravel to gravelly sand fill was encountered at the test hole locations.

4.2.3. Fill – Silty Clay to Clayey Silt

Fill material, consisting of silty clay to clayey silt was encountered in all the boreholes at depths ranging from 0.2m to 0.5m below the ground surface which extended to depths ranging about from 0.6m to 1.2m below the existing ground surface.

4.2.4. Silty Clay Till to Clayey Silt Till

Cohesive glacial till deposits ranging in texture from silty clay to clayey silt were encountered in all of the boreholes, at depths ranging from 0.6m to 1.2m below ground surface, which extended to borehole termination depths ranging from 5.2m to 6.1m below ground surface.

Glacial till deposits can be expected to contain cobbles and boulders. The slow rate of drilling experienced within these deposits can be attributed to the presence of cobbles and/or boulders.

4.2.5. Silty Sand

Embedded within the cohesive glacial till, a 0.2m to 0.4m thick layer of wet silty sand was encountered in all of the boreholes, at depths ranging from 2.1m to 3.0m below ground surface, which extended to depths ranging from 2.5m to 3.3 m below the ground surface. The natural water content of samples of the silty sand deposit ranged from 16% to 19% by weight.

4.3. SUBSURFACE CONDITIONS - NOBLETON WELL 5

In summary, the subsurface conditions encountered in the boreholes consisted of topsoil or a flexible pavement structure underlain by fill material, generally consisting of firm to very stiff silty clay to clayey silt, loose to compact silty sand to sand and silt and, loose sand and gravel. Native overburden deposits consist of very dense cohesionless deposits ranging in composition from silt to sand and silt, stiff to hard silty clay to clayey silt and very dense silty sand till to sandy silt till. A lithological profile interpretation based on the borehole information has been prepared and presented in **Figure 8**.

4.3.1. Topsoil

A layer of topsoil, ranging in thickness from 80 mm to 130 mm was encountered at the ground surface at the borehole locations. Topsoil thickness will vary between and beyond the borehole locations.

4.3.2. Flexible Pavement

Borehole BH5-3 was advanced through the pavement structure of the driveway to the property located at 12860 ON-12. A pavement structure consisting of 80mm asphaltic concrete, underlain by sand and gravel fill was encountered.

4.3.3. Fill – Silty Clay to Clayey Silt

Fill material, consisting of silty clay to clayey silt was encountered at boreholes, BH5-1 to BH5-4 and BH5-6 at depths ranging from 0.1m to 0.7m below the ground surface which extended to depths ranging from 0.7m to 2.2m below the existing ground surface.

4.3.4. Fill – Silty Sand to Sandy Silt

Silty sand to sandy silt fill material was encountered in boreholes, BH5-4 and BH5-5 at depths of 0.1m and 0.7m below ground surface which extended to depths of 1.5m and 1.8m below ground surface.

4.3.5. Silt

Silt deposits (non-plastic) were encountered in the boreholes, BH5-1, BH5-2, BH5-4 and BH5-6. The silt deposits were encountered at depths ranging from 2.2m to 4.8m below ground surface which extended to borehole termination depths ranging from 6.5m to 9.7m below ground surface.

4.3.6. Silty Clay to Clayey Silt

Cohesive deposits of silty clay to clayey silt were encountered in boreholes, BH5-4 and BH5-6. The silty clay to clayey silt deposits were encountered at depths of 0.7m and 1.8m below ground surface which extended to depths of 2.2m and 4.8m below ground surface.

4.3.7. Sandy Silt And Sand and Silt

Cohesionless deposits of sandy silt and sand and silt were encountered in boreholes BH5-2 and BH5-3 at depths of 2.2m and 4.5m below ground surface which extended to depths of 3.5m and 5.6m below ground surface.

4.3.8. Silty Sand Till to Sandy Silt Till

A cohesionless glacial till deposit of silty sand to sandy silt texture was encountered in borehole BH5-6 at a depth of 2.2m below ground surface, which extended to a depth of 3.0m below ground surface.

A Standard Penetration test carried out in silty sand till to sandy silt till deposit measured a SPT N-value of 74 blows per 0.3 penetration indicating a very dense relative density. The natural water content of a sample of silty sand till to sandy silt till was 10% by weight.

Glacial till deposits can be expected to contain cobbles and boulders. The slow rate of drilling experienced within these deposits can be attributed to the presence of cobbles and/or boulders.

4.4. MONITORING WELL INSTALLATION

Monitoring wells were installed in six (6) boreholes; three at the Well 2 Site (BH2-1 BH2-2, BH2-3), and three at the Well 5 Site (BH5-1, BH5-2, BH5-4). Upon completion of borehole drilling activities, a 51mm monitoring well was installed by inserting the screen and casing assembly into the borehole to the designed depth and then packing a silica sand pack filter around the screen interval. Above the sand pack, a bentonite hole plug was installed to eliminate contamination from surface along the annulus space. All installed monitoring wells were finished with an above ground protective casing. Ground levels at each of the monitoring well locations were surveyed to an elevation datum and reported on the borehole logs. Well installation details are also included on the logs in **Appendix B**.

4.5. GROUNDWATER LEVEL MONITORING

Upon completion of well drilling activities, the groundwater monitoring wells were purged and developed to remove fine sediments adjacent to the screen interval. The wells were purged of a minimum of three (3) well volumes. Water levels were then monitored at the Site on December 8, 2023, September 11, 2024, and May 22, 2025 at the Well 2 location, and on October 25, December 12, 2023, August 16, September 11, 2024, and May 22, 2025 at the Well 5 location. A summary of the water level observations to date, including well construction details, and other information is included in Table C-1, and Table C-2, Appendix C.

At the Well 2 Site, the monitoring wells were screened within the upper 6m of overburden, and water levels ranged from dry conditions at BH2-2 (in December 2023), to 1.9m BGS at BH2-2 (in May 2025).

Groundwater levels at BH2-1 ranged from 1.6 to 2.6m, and at BH2-3 the levels ranged from 1.3m to 2.2m below existing ground across the monitoring site visits. The groundwater elevations over the monitoring period recorded on May 22, 2025 ranged from 263.2 to 264.0m ASL, as highlighted on Figure 9, and represented the highest levels observed over the program.

At the Well 5 Site, the monitoring wells were screened within the upper 9.2m of overburden, and water levels ranged from 6.9 to 5.7 at BH5-1, 6.4 to 5.1 at BH5-2, and dry to 5.5m at BH5-4. The groundwater elevations over the monitoring period recorded on May 22, 2025 ranged from 254.9 to 255.7m ASL, as highlighted on Figure 10.

4.6. HYDRAULIC CONDUCTIVITY ASSESSMENT

4.6.1. Grain Size Distribution

EnVision has reviewed grain size distribution plots from the geotechnical field investigation and has tabulated estimated hydraulic conductivity (K) using a variety of empirical relationships. Details are included on the calculation sheets in **Appendix D**. *Table 4-1* presents a summary of the estimated K value for each of the soil samples. The provided value is the geometric average value from selected empirical relations, as outlined in **Appendix D**.

BH ID	SAMPLE ID	DEPT	н	SOIL UNIT	HYDRAULIC CONDUCTIVITY
		From (m)	To (m)		(m/sec)
BH2-1	SS6	3.8	4.2	SILTY CLAY TILL TO CLAYEY SILT TILL	6.5X10 ⁻⁹
BH2-2	SS2	0.6	1.1	SILTY CLAY TILL TO CLAYEY SILT TILL	2.5X10 ⁻⁹
BH2-3	SS2	0.6	1.1	FILL	8.6X10 ⁻⁹
BH5-1	SS2	0.7	1.2	FILL	2.0X10 ⁻⁹
BH5-1	SS7	4.5	5.0	SILT	3.4X10 ⁻⁸
BH5-2	SS7	4.5	5.0	SILT AND SAND	1.8X10 ⁻⁸
BH5-3	SS4	2.3	2.8	SILT AND SAND	7.4X10 ⁻⁷
BH5-4	SS5	3.1	3.6	SILTY CLAY TO CLAYEY SILT	4.7X10 ⁻⁹

Table 4-1: Summary of Estimated K (Grain Size Relationships)

The K values have been summarized to provide a range based on the soil unit description in *Table 4-2*.

	LOW K	HIGH K	AVERAGE K
SOLONI	(m/sec)	(m/sec)	(m/sec)
FILL	2.0X10 ⁻⁹	8.6X10 ⁻⁹	2.00X10 ⁻⁹
SILT	3.4X10 ⁻⁸	3.4X10 ⁻⁸	3.4X10 ⁻⁸
SILT AND SAND	1.8X10 ⁻⁸	7.4X10 ⁻⁷	3.8X10 ⁻⁷
SILTY CLAY TO CLAYEY SILT	4.7X10 ⁻⁹	4.7X10 ⁻⁹	4.7X10 ⁻⁹
SILTY CLAY TILL TO CLAYEY SILT TILL	2.5X10 ⁻⁹	6.5X10 ⁻⁹	4.5X10 ⁻⁹

Table 4-2: Summary of K Value Ranges by Soil Unit

4.6.2. In-Situ Single Well Response Testing (SWRT)

EnVision conducted confirmatory SWRTs at all monitoring wells on Site, apart from BH5-4 which was measured to be dry at the time of testing. In advance of performing SWRTs, the monitoring wells were developed to remove the potential presence of fine sediments. The development process involved purging of the monitoring wells to induce the flow of fresh formation water through the screen. The monitoring well water levels were permitted to fully recover prior to performing SWRTs.

During the SWRT, a slug of water was near-instantaneously removed from the well and the response in water level was recorded. The K values for each of the tested wells were calculated from the SWRT data using Aqtesolv Software and the Bouwer-Rice solutions for unconfined conditions. The semi-log plots for normalized drawdown versus time are included in **Appendix E.** *Table 4-3* presents a summary of the insitu rising head test results.

Table 4-3:	Summary	of in-Situ	Single Well	Response	Testing

BH ID	SCREEN DEPTH		REEN DEPTH SOIL UNIT		HYDRAULIC CONDUCTIVITY		
	From (m)	To (m)		(m/sec)	(m/day)		
BH2-1	2.1	5.1	SILTY SAND TO SILTY CLAY TILL	8.5x10 ⁻⁸	7.3x10 ⁻³		
BH2-2	3.0	6.0	SILTY SAND TO SILTY CLAY TILL	3.9x10 ⁻⁹	3.4x10 ⁻⁴		
BH2-3	2.2	5.2	SILTY SAND TO SILTY CLAY TILL	1.3x10 ⁻⁷	1.1x10 ⁻²		
BH5-1	6.1	9.1	SILT	6.8x10 ⁻⁷	5.9x10 ⁻²		
BH5-2	6.1	9.1	SILT	9.1x10 ⁻⁸	7.9x10 ⁻³		

4.7. GROUNDWATER QUALITY ASSESSMENT

To assess the suitability for discharge of pumped groundwater to the York Region sanitary sewer during dewatering activities, one (1) groundwater sample was collected from each of BH2-1, and BH5-2. Prior to collection of the sample, approximately three (3) well volumes of standing groundwater were purged from the well. The sampling date for BH2-1 was September 11, 2024, and the sampling date for BH5-2 was October 25, 2023.

The suites were collected unfiltered and placed into pre-cleaned laboratory-supplied vials and/or bottles provided with analytical test group specific preservatives, as required. Dedicated nitrile gloves were used during sample handling. The groundwater sample was submitted to an independent laboratory, Bureau Veritas Laboratories (BV), in Mississauga, Ontario, for analysis of parameters of the York Region Sewer Use By-Law. BV is a certified laboratory by the Canadian Association for Laboratory Accreditation Inc.

For the assessment purposes, the analytical results were compared to the Regional Municipality of York By-Law No. 2021-102, Limits for Sanitary Sewer Discharge, and Limits for Storm Sewer/Land Drainage Discharge.

A summary of the analytical results and the laboratory Certificate of Analysis (CofA) are enclosed in **Appendix F.** A summary of the noted exceedances is included in *Table 4-4* below.

PARAMETER	UNITS	LIMITS FOR STORM DISCHARGE	LIMITS FOR SANITARY DISCHARGE	RESULTS BH5-2 (10-25-24)	RESULTS BH2-1 (09-11-24)		
TOTAL SUSPENDED SOLIDS (TSS)	mg/L	15	350	<u>370</u>	95		
TOTAL MANGANESE (MN)	ug/L	150	5000	180	69		
NOTES:							
UNDERLINED BOLD = EXCEEDS BOTH LIMITS							
BOLD = EXCEEDS THE STORM SEWER RELEASE LIMITS ONLY							

Table 4-4: Summary of Groundwater Exceedances Against York Region Storm/Sanitary Sewer Discharge

Results from the Well 2 Site monitoring well, BH2-1 indicate one (1) exceedance when compared to the parameters under York Region storm sewer release limit. The lone exceedance was reported for total suspended solids. The results from the well sampling had no reported exceedances against the sanitary sewer release limits.

Results from the monitoring well, BH5-2 indicate one (1) exceedance when compared to the parameters under York Region sanitary sewer release limit. The exceedance includes total suspended solids. The results also indicate two (2) exceedances when compared to the parameters under York Region storm sewer release limit. The exceedances include total suspended solids and total manganese.

5. CONSTRUCTION DEWATERING ASSESSMENT

Water takings within the Province of Ontario are governed by the Ontario Water Resources Act (OWRA), and the Water Taking and Transfer Regulation (O.Reg. 387/04). In addition, O.Reg. 63/16 regulates water takings for temporary activities, such as construction and road work dewatering. In Ontario, construction dewatering that exceeds 50,000 L/day requires either a Category 3 PTTW, or registration with the MECP EASR. The proposed work may fall within the following possible categories:

- Surface water diversions without pumping (i.e. non-earth cofferdam, sheet piles, sandbags designed to provide a dry work area) are exempt and do not require permitting.
- Surface water diversions with pumping out of an excavation designed to provide a dry working area is exempt from permitting, except that best management practices listed in the regulation must be followed.
- Pumping of groundwater (construction dewatering) to maintain a dry work area, which falls under one of three scenarios:
 - Volumes of a combination of groundwater and surface water (precipitation) that is below 50,000 L/day are exempt from permitting
 - Volumes of a combination of groundwater and surface water (precipitation) that is above 50,000 L/day but below 400,000 L/day require registration as an EASR
 - Volumes of groundwater that is above 400,000 L/day will require a Category 3 PTTW.

In practice, the timelines associated with the permitting required for construction dewatering range from one or two weeks, to upwards of 90 days. The EASR process is self-registered and only requires that documents be prepared and attested to on the online portal. A review period is not associated with this process. Category 3 PTTW's require a review by the MECP, with a turnaround time of 90 days. Both the PTTW and EASR processes have monitoring, discharge quality controls, and groundwater management requirements. Typically, the permit holder has to ensure that the conditions outlined are met. In addition, any permit holder is required to report water takings using the online Water Taking and Reporting System (WTRS).

For purposes of providing an estimation of future water taking rates and potential zone of influence from active groundwater control measures, the following assumptions have been included in the analysis.

- Surface water will be directed away from open excavation areas to limit inputs;
- Groundwater control methods will be utilized that are designed to prevent loss of ground;
- The selection of a dewatering system shall be left to the contractor, with recommendations that the dewatering plan be reviewed by a qualified dewatering specialist.

5.1. PROJECT OVERVIEW

The following overview is based on the 90% design drawing set provided by ETO Engineering, dated September of 2024.

5.1.1. Well 2 Upgrades

During the facility upgrades, several excavations are planned including the removal of the chlorine contact tank, and associated piping. Shoring support is anticipated for the chlorine tank removal, and construction of the valve chamber and 150mm sewer lines. Shoring design had not been provided, however assumptions with respect to the placement and construction method have been incorporated into the dewatering analysis where appropriate.

Several excavations will be extending below the water table, including;

- Removal of a chlorine contact tank, and associated piping/features.
- Removal of existing 200mm watermain, 150mm sanitary and storm sewer lines.
- Installation of a valve chamber, maintenance hole, and associated piping infrastructure.

Based on the 90% design detail, the chlorine contact tank founded at a depth of 3.6m BGS, and measures approximately 13m by 2m. It is expected that the excavation to remove will by much larger than this, and can be estimated as a rectangular area 18m by 7m in area. The base of the structure is estimated at elevation 258.9m ASL, with groundwater levels at the nearby BH2-2 and BH2-3 reading 263.2 to 264.0m ASL. Shoring around this structure is anticipated and it is recommended that it be toed into competent clay till below the silty sand material. The toe in elevation is recommended below about 262 m ASL, as shown in Figure 7.

The existing 200mm watermain that extend from the Well No. 2 building across to the tank is estimated with a length of 30m and a depth between 1.8 and 2.7m BGS. Open cut trenching is anticipated along this section to facilitate the removal, with backfilling once completed.

The existing 150mm sanitary pipe is approximately 20m in length, and assumed to reach up to 3m in depth. Approximately 4m of 150mm storm pipe will also require excavation, and is also assumed to reach up to 3m in depth. Open cut trenching is ancipated along these two sections to facilitate the removal, with backfilling once completed.

Based on the information from drawing C110, the valve chamber will be installed to below about elevation 261.6m ASL (approximately 3.2m BGS). The structure is rectangular in shape; approximately 3m by 3m in area, and will be supported by future shoring system in this area.

Up to 45m of 250mm PVC pipe is to extend from the Well 2 building to the valve chamber, and beyond terminating along Faris Ave. The piping will be at invert elevation 263.9 to 261.9m ASL. It is anticipated that the piping will be installed using open cut excavation. A 1200mm maintenance hole is to be installed with the lowest invert elevation of 261.7m ASL.

Approximately 60m of trenching will be required for the installation of a new 150 to 200mm sanitary sewer extending from the building, through the maintenance hole and out to Faris Avenue. The invert elevations for this new sewer will range from 263.90 to 260.08m ASL. It is anticpated that this will be completed using open cut methods.

5.1.2. Well 5 Upgrades

The upgrades for the Well 5 facility include several excavations, including for:

Construction of a water treatment plant comprising of multiple underground compartment tanks and a single-story above ground structure,

Watermain and sanitary sewer installations.

Based on the reviewed drawing set, the proposed treatment plant is rectangular in shape with approximate dimensions of 24m by 20m. The structure will include below grade structure for housing of water cells, pumps and other infrastructure. The treatment plant is to be founded between elevations 253.0 and 253.5m. Locally, the two high lift pump wells will extend deeper to elevation between 252.0 and 252.5m. A rigid contiguous shoring system is to be installed to support the excavation and construction of the underground facility. A raft slab is anticipated below the structure, and will require active dewatering to a minimum of 1.0m below the excavation base level to facilitate installation. The underground level is recommended to be constructed watertight and will therefore not include any underdrainage layer.

It is anticipated that the proposed new watermains and sanitary sewers at Nobleton Well 5 will be installed in supported open cut excavations. Based on the expected excavation depths of about 3.0 m to 3.5 m for the open cut installations, trenches will primarily be through pavement structure, fill material of variable texture, and into the underlying native deposits of sand and silt to silt, and silty clay to clayey silt.

5.2. DEWATERING ANALYSIS

5.2.1. Well 2 Excavations

A conceptual hydrogeological model of the Site is presented graphically on Figure 7. The model has been generated from the geotechnical data and interpolated between the borehole to provide an interpretation of the subsurface conditions. As non-continuous sampling was completed during the initial field investigation, the inferred conditions may vary between the borehole conditions. Groundwater elevations prior to any dewatering activity have been assigned a fluctuation allowance that increases the high May 2025 measured levels by 0.3 m to account for seasonal influence. The target groundwater elevation has been assigned as 1m below the anticipated lowest excavation level.

EXCAVATION	LENGTH (m)	WIDTH (m)	GROUNDWATER ELEVATION (m ASL)*	U/S EXCAVATION (m ASL)	TARGET GROUNDWATER ELEVATION (m ASL)	MAX. TOTAL DRAWDOWN (m)
CHLORINE TANK REMOVAL	18	7	264.3	258.9	257.9	6.4
200mm WATERMAIN REMOVAL	30	3	264.3	264.0 to 262.5	263.0 to 261.5	2.8
150mm SANITARY	24	3	264.3	262.6	262.1	2.2

Table 5-1: Summary of Well 2 Facility Excavations

Hydrogeological Impact Assessment Report Nobleton Wells 2 & 5 Upgrades, The Regional Municipality of York, ON ETO Engineering EnVision Consultants Ltd. Project #: 23-0358 May 2025

EXCAVATION	LENGTH (m)	WIDTH (m)	GROUNDWATER ELEVATION (m ASL)*	U/S EXCAVATION (m ASL)	TARGET GROUNDWATER ELEVATION (m ASL)	MAX. TOTAL DRAWDOWN (m)
REMOVAL						
VALVE CHAMBER	3	3	264.3	261.5	261.0	3.3
250mm PVC PIPE	45	3	264.3	263.9 to 261.9	263.4 to 261.4	0.9 to 2.9
150mm SANITARY SEWER AND MAH	60	3	264.3	263.90 to 260.08	263.4 to 259.5	0.9 to 4.8

NOTES:

Shoring influence during dewatering for the chlorine tank removal is simulated, using a 1/10 multiplier to the estimated hydraulic conductivity to represent attenuation via a permeable boundary.

In all calculations, the worst case for each excavation has been selected. This translates to selecting the highest expected groundwater elevation (May 2025 water levels have been used, with a modest 0.5 m increase to account for seasonal variability), and the lowest underside of excavation for each component assessed, as shown above in *Table 5-1*.

5.2.2. Well 5 Excavations

A conceptual hydrogeological model of the Site is presented graphically on Figure 8. The model has been generated from the geotechnical data and interpolated between the borehole to provide an interpretation of the subsurface conditions. As non-continuous sampling was completed during the initial field investigation, the inferred conditions may vary between the borehole conditions. Groundwater elevations prior to any dewatering activity have been assigned a fluctuation allowance that increases the high spring 2025 measured levels by 0.3 m to account for seasonal influence. The target groundwater elevation has been assigned as 1m below the anticipated lowest excavation level. The construction for the WTP will be supported by a groundwater cutoff shoring system, which has been incorporated into the dewatering analysis.

Table 5-2	2: Summary	of Well 5	Facility Exco	avations
-----------	------------	-----------	---------------	----------

EXCAVATION	LENGTH (m)	WIDTH (m)	GROUNDWATER ELEVATION (m ASL)*	U/S EXCAVATION (m ASL)	TARGET GROUNDWATER ELEVATION (m ASL)	TOTAL DRAWDOWN (m)
WTP	24	20	256.1	252.0	251.0	5.1
WATERMAINS \SANITARY SEWERS	60	5	255.1	258.0 to 257.0	NA	NA

NOTES:

*Groundwater elevations include a 0.3m fluctuation allowance added to the measured spring time 2025 groundwater levels to account for seasonal variability.

In all calculations, the worst case for each excavation has been selected. This translates to selecting the highest likely groundwater elevation and the lowest underside of excavation for each component assessed, as shown above in *Table 5-2*.

5.3. CONSTRUCTION DEWATERING RATES

To estimate the amount of dewatering needed to drain the area for proposed construction along opencut sections, the Powers expression (long narrow system equation) for unconfined and confined aquifer steady-state conditions, was used:

$$Q = \frac{\pi K(H^2 - h^2)}{\ln^{R_0}/r_e} + \frac{2(xK(H^2 - h^2))}{2L}$$

Where:

Q = Groundwater discharge (m³/day)

H = Initial depth of water (static head) prior to dewatering (m)

h = Elevation of water beneath excavation while pumping (m)

K = Hydraulic Conductivity (m/day)

 $r_e = effective radius of excavation (m)$

 $R_0 = 2 L = estimated radius of influence (m)$

During the early stages of dewatering, higher pumping rates are typically required to remove the water that is stored within the overburden materials. The storage volume will drain from the porous media as the water table is lowered. This drainage will be controlled by physical processes and limited by the soil conditions within the excavated area. The volume of storage (V_s) can be estimated with the following approximation;

Where:

L = excavation length (m)

w = excavation width (m)

s = total drawdown (m)

S^y = specific yield (0.05 for clay)

 $R_0 = estimated radius of influence (m)$

Based on the volume of storage calculation, the approximate pumping rates can be assessed over a selected period, typically 7 to 14 days. In addition to the steady-state groundwater flow, and the removal of water from storage, stormwater inflows from direct rainfall/precipitation events are considered in the predicted rates. The assessment includes capacity for typical rainfall events of up to 29mm in 24 hours.

Typical stormwater runoff management will be required during precipitation events and best management practices should be employed to protect open excavations from runoff accumulation. In addition, perched groundwater trapped within granular bedding planes may be encountered at select locations and would need to be managed using typical sump pumping methods, if significant volumes are present. Shallow perched groundwater can be significant when it is encountered along bedding planes associated with existing underground infrastructure, however it will drain under sump pumping and be manageable without a water taking permit. The treatment of such water is typically addressed by way of settling tank with discharge conveyed to ground or storm sewer.

Based on the site conditions, and project objectives, the following summary of total construction dewatering rates for the Well 2 Facility upgrades are provided, in Table 5-3. The individual source calculations are provided in Table G-1, and Table G-2 in Appendix G.

EXCAVATION	STEADY STATE GROUNDWATER FLOW (L/DAY)	7-DAY STORAGE REMOVAL (L/DAY)	PRECIPITATION (L/DAY)	TOTAL DEWATERING RATE (L/DAY)
CHLORINE TANK REMOVAL	4,000	15,700	3,650	23,350
200mm WATERMAIN REMOVAL	13,600	10,000	2,600	16,210

Table 5-3: Summary of Well 2 Facility Total Dewatering Rates

EXCAVATION	STEADY STATE GROUNDWATER FLOW (L/DAY)	7-DAY STORAGE REMOVAL (L/DAY)	PRECIPITATION (L/DAY)	TOTAL DEWATERING RATE (L/DAY)
150mm SANITARY AND STORM REMOVAL	10,400	2,900	2,100	12,490
VALVE CHAMBER	1,800	700	260	2,760
250mm PVC PIPE	15,900	20,000	3,900	39,820
150mm SANITARY SEWER AND MAH	17,600	48,600	5,200	71,420

Based on the site conditions, and project objectives, the following summary of total construction dewatering rates for the Well 5 Facility upgrades are provided, in *Table 5-4*. The individual source calculations are provided in **Table G-3** in **Appendix G**. Note that the Total Dewatering Rate is assuming a 7-day dewatering period to remove the initial storage water plus any groundwater seepage.

Table 5-4: Summary of Well 5 Facility Total Dewatering Rates

EXCAVATION	STEADY STATE GROUNDWATER FLOW (L/DAY)	7-DAY STORAGE REMOVAL (L/DAY)	PRECIPITATION (L/DAY)	TOTAL DEWATERING RATE (L/DAY)
WTP	5,700	60,000	28,700	94,410
WATERMAINS AND SANITARY SEWERS	0	0	3,900	3,920

5.4. GROUNDWATER CONTROL

5.4.1. Well 2 Facility Groundwater Control

Where excavations are made through cohesive silty clay to clayey silt material, it is expected that much of the water seepage should be controllable by use of conventional pumping from filtered collection sumps for trenches. However, contractors should provide provisional bid pricing to employ more elaborate, advanced dewatering procedures such as well points if the flow from fill material or any native cohesionless deposit that may be encountered is not controlled by conventional methods. The groundwater table must be lowered to at least 1.0m below the deepest excavation base.

5.4.2. Well 5 Facility Groundwater Control (WTP)

Surface water and groundwater control will be necessary to enable construction below the groundwater table. Where cohesionless deposits are encountered below the groundwater table, flowing soil conditions (with associated ground loss, base instability and surface settlement) will occur unless suitable groundwater control and active dewatering measures are implemented.

While design, installation, operation, and maintenance of the dewatering system is the Contractor's responsibility, provided herein are general approaches to control the groundwater into excavations during construction.

Excavations into and through the cohesionless water bearing deposits will require active dewatering measures such as closely spaced vacuum well point systems to depress the piezometric level at least 1.0m below the excavation base. Depending on the base depth of the excavation, it may be necessary to use closely spaced eductors instead of well points. Groundwater seepage can also be controlled with cut-off walls designed with sufficient embedment depth to limit the influence of groundwater on construction as well as the effects of groundwater lowering on existing structures and settlement sensitive utilities, if present. Cut-off walls should also be designed with sufficient embedment depth below the excavation base to satisfy stability requirements and to mitigate the risk of basal instability/boiling.

To verify the functionality of the dewatering system, groundwater monitoring wells/piezometers will be required to monitor the groundwater level before, during and after construction. The excavation shall not be extended below groundwater level unless the groundwater monitoring data indicates that the piezometric level has been depressed at least 1.0 m below the targeted excavation base.

Around the perimeter of the excavation an interceptor trench should be installed to prevent water from storm events from entering the excavation. The dewatering system must also include appropriate filtration mechanisms to prevent the pumping of fines and loss of ground during the dewatering activities.

5.5. DEWATERING INDUCED ZONE OF INFLUENCE

The zone of influence (ZOI) is calculated using the empirical Sichardt equation (Kyrieleis & Sichardt, 1930), which can be stated as:

$$R_0 = C(H-h)\sqrt{K}$$

Where:

C = Coefficient constant, assumed 3000 for a line source;

Based on site conditions and total expected drawdowns outlined above the estimated zone of influence for each of the dewatering sources have been summarized in *Table 5-5* below. Figure G-1 and Figure G-2, Appendix G, highlight the maximum expected ZOI for each potential source, based on the analysis.

Table 5-5: Summary of Dewatering Induced Zone of Influence

SOURCE	RADIUS OF INFLUENCE (M)
CHLORINE TANK	18.5
200mm WATERMAIN	19.8
150mm SANITARY AND STORM	13.6
VALVE CHAMBER	8.9
250mm PVC PIPE	24.1
150mm SANITARY SEWER AND MAH	32.9
WTP	27.2
WATERMAINS AND SANITARY SEWERS	0

5.6. MECP WATER TAKING PERMIT (EASR/PTTW)

Based on the predicted daily water taking rates, the future construction dewatering should be managed through an Environmental Activity and Sector Registry (EASR) for short-term construction dewatering activities (O. Reg. 63/16). The EASR is to be registered by the project owner using the on-line MECP Environmental Permissions portal. The EASR process includes several conditions and technical requirements, including the following:

- 1) A Qualified Person must complete a "Water Taking and Discharge Plan" to guide the dewatering activity and to ensure that no unacceptable impacts to the natural environment, private property owners, or groundwater users will occur due to the activity.
- 2) A discharge plan must be prepared to direct the safe discharge of dewatering effluent during construction.
- 3) A mitigation strategy must be developed to direct response to any negative impacts to the environment, or stakeholders.

5.7. DISCHARGE PERMITTING AND TREATMENT

Under the EASR registration, the options available for discharge of dewatering effluent are one of the following:

- 1) To land surface 30m setback from mapped watercourse;
- 2) Municipal sanitary or storm sewer, in accordance with any municipal requirements; or,

3) Sewage works operating under Environmental Compliance Approval.

Typical measures for groundwater discharge during construction is to pump it to a municipal sewer, collect and haul offsite for disposal, or to treat and release to land surface. In either case, the discharge activity may be regulated by a municipal by-law, or provincial regulation.

Due to Site constraints at the Well 2 location, there is no realistic staging area to allow for discharge to the land surface. All potential locations for discharge overland fall within the minimal setback of 30m from the nearby watercourse. Discharge to the municipal sewer will be required at this location, or through offsite haulage.

At the Well 5 location, a discharge area can be identified more than 30m setback from the watercourse. Discharge through an erosion and sediment control plan with treatment is preferable. Additional information is provided below.

The following information provides a summary of the two recommended options for groundwater discharge management during construction dewatering.

5.7.1. Discharge Management Options for Well 2 Facility

There are two possible options for the management of construction dewatering effluent at the Well 2 location. The contractor will be responsible for implementing the preferred method.

<u>Option One</u> – discharge is to be collected and containerized on site in a series of environmental tanks, sized to provide appropriate capacity, as outlined in Section 5.3. The effluent will require offsite disposal by a licenced liquid waste haulage contractor. Treatment will be directed by the receiving facility, however it is anticipated that only containment and settlement will be required. This should be confirmed by the contractor and receiving facility.

<u>Option Two</u> – discharge to the municipal storm sewer (ditch) system under an approved sewer use agreement. This will require coordination with the owning agency, and will be dependent on available capacity in the receiving sewer, and other logistical issues. Treatment of the effluent for total suspended solids and total manganese will be required. The treatment system must be designed by a qualified contractor. The discharge agreement may include additional constraints.

5.7.2. Discharge Management Options for Well 5 Facility

<u>Option One</u> – discharge is to be collected and containerized on site in a series of environmental tanks, sized to provide appropriate capacity, as outlined in Section 5.3. The effluent will require offsite disposal by a licenced liquid waste haulage contractor. Treatment will be directed by the receiving facility, however it is anticipated that only containment and settlement will be required. This should be confirmed by the contractor and receiving facility.

<u>Option Two</u> – Discharge to the land surface with a minimal setback of 30m from the edge of the watercourse. The dewatering effluent should be directed to an appropriately sized weir tank for temporary retention and settlement prior to release as overland runoff. A filter bag is recommended at the discharge location to retain any disturbed sediment. The discharge must be sampled prior to release to confirm that the following parameters: pH, boron, total boron, cobalt, total cobalt, copper, total

copper, iron, total iron, molybdenum, total molybdenum, tungsten, total tungsten, uranium, total uranium, vanadium, total vanadium, zinc, and total zinc meet the Provincial Water Quality Objectives (PWQO). Once confirmed the effluent passes the PWQO parameters, the effluent can be released to the land surface at a minimum setback of 30m from any surface water feature. This should be done to minimize land scouring and erosion.

<u>Option Three</u> – discharge to the municipal storm sewer system under an approved sewer use agreement. This will require coordination with the owning agency, and will be dependent on available capacity in the receiving sewer, and other logistical issues. Treatment of the effluent for total suspended solids and total manganese will be required. The treatment system must be designed by a qualified contractor. The discharge agreement may include additional constraints.
6. IMPACT ASSESSMENT FOR DEWATERING APPLICATIONS

As there are some groundwater control activities expected at the Well 2 and Well 5 Sites, the following impact assessment has been completed for the purpose of providing a mitigation and monitoring plan. It is important to note that the effects of local dewatering cannot be completely mitigated as the objective is to remove groundwater from the work area to provide stable working conditions. Therefore, the impact assessment should consider the condition that dewatered working areas are to occur, however the duration is to be limited to the time required to complete Site works. Groundwater control should be localized to the excavation locations only, and excessive drawdown below the target pumping levels be avoided. The residual influence of groundwater control is typically short-lived, and the conditions should quickly re-equilibrate to normal conditions once dewatering activities are stopped.

The following sections outline the potential impacts for the Sites.

6.1. SOURCE WATER PROTECTION AREAS

A drinking water threat is any activity or condition that would adversely affect the quality or quantity of any water that is used as a source of drinking water (Ontario Regulation 287/07). The threats associated with construction dewatering could potentially include any, or all of the following:

- Activity that removes water from an aquifer or a surface water body without returning it to the same source.
- An activity that reduces the recharge of an aquifer.
- Storage, use of chemicals (fuel, hydraulic fluids) in operation of dewatering equipment.

As outlined in Section 1.3, the Sites are located within a WHPA-A, with scores of 10. The Sites are not located wtihin an area designated as Highly Vulnerable Aquifer, or Significant Groundwater Recharge Areas.

With respect to protection of drinking water quality, the construction dewatering works are not anticipated to introduce unnecessary risk as the works are focused on a shallow depth, with ample thickness of overburden present beneath the excavations. Both Sites collect drinking water from the Scarborough Formation, which is estimated at more than 100m below ground surface. Fueling and use of chemicals (including any gasoline, hydraulic fluids), have restrictions based on the WHPA-A designation. DNAPLs are restricted and prohibitied from the Site, and refueling must be done under supervision from start to finish at an area offsite (preferable), or on hard ashpalt surface, and not within excavation or landscaped areas. York Region spill procedures are to be followed directly, and any incidents involving fuels should include direct reporting to the RMO as part of any call out procedures.

Drinking water quantitiy risks are considered low, due to the Site conditions and temporary nature of the works. As the Sites are not mapped as SGRA or HVA, the risk of reducing or eliminating recharge to the underlying source aquifer is considered negligible. Dewatering effluent is being circulated back to the natural system, and the shallow nature of the excavations and low volumes of expected groundwater extraction further reduce any risk to the drinking water quality obtained from the onsite supply wells.

6.2. SURFACE WATER IMPACTS

Please note that an enhanced surface water study has been initiated for the Site and Study Areas and is to be completed in Summer 2025. The objectives of the study is to provide baseline information on the surface water features adjacent to the Sites. The following sections assume that the surface water study will be completed prior to the construction period and that the following prescribed monitoring plans will be implemented based on the assessment.

6.2.1. Well 2 Facility Surface Water Impact Assessment

According to the dewatering calculations presented in Section 5, the estimated ZOI have been plotted on **Figure G-1**. Several dewatering sources ZOI extend below the nearby watercourse, however the feature is not considered to be a cold-water system which would be fed by groundwater discharge.

Temporary groundwater control activities will not adversely affect the natural operation of the waterway as the expected water takings are of limited duration and volumes. The dewatering effluent will be recirculated to this feature as a discharge management strategy. A monitoring plan has been developed to mitigate any negative impacts.

6.2.2. Well 5 Facility Surface Water Impact Assessment

According to the dewatering calculations presented in Section 5, the estimated ZOI from dewatering associated with the Well 5 Facility upgrades have been plotted on Figure G-2. The ZOI extends below the nearby watercourse, and enhanced monitoring will be required.

Although some groundwater control activities of limited duration will reduce potential baseflow to this feature, it is expected that the discharge management strategy will include provisions to return the dewatering effluent back to the natural system, through a treatment and monitoring plan. Any adverse impacts will be observable within the monitoring plan, with contingency planning to mitigate any long-term or permanent harm to the system.

6.3. INFRASTRUCTURE IMPACTS

There is always a possibility of inducing settlement to neighboring buildings, utilities, and underground structures/infrastructure when lowering water levels or depressurizing an aquifer. It is considered a best practice to initiate a proactive monitoring program to identify any potential areas of concern and the need and type of monitoring required. Utilities, and transit owners may have stringent monitoring requirements, which will have to be adhered to.

It is understood that a geotechnical settlement analysis has been provided within the separate Geotechnical Investigation Report, prepared by EnVision, dated March 12, 2025. Results from the settlement analysis indicate predicted settlement ranging from 5 to 15mm are possible, which are considered "low" and within accepted values and that a pre- to post-construction condition survey is recommended for the project. Additional information is included in the geotechnical report, including a monitoring plan to mitigate the risk associated with dewatering induced settlement.

6.4. WATER SUPPLY WELL IMPACTS

Any negative impacts to groundwater users within the Study Area are considered negligible based on the following:

- 1) Shallow earth works are anticipated, and the well database indicates that the municipal supply wells at the Sites are found below about 100m depth, on average;
- 2) Temporary groundwater control measures are anticipated of a short term duration;
- 3) Zone influence (<35m from open cut excavation) due to dewatering has been estimated;
- 4) Relatively minor water takings have been estimated for the project, further lessening any risk to the groundwater quantity and quality for nearby groundwater users.

During construction activities, installation of any dewatering wells must be closely monitored and should be reviewed by the Qualified Person to confirm that the existing water supply and deep monitoring wells are not encroached upon. Dewatering wells should be carefully installed, where required, to protect against pressure grout migration within the shallow subsurface that could potentially migrate into the onsite well screens. The dewatering plans and drawings need to be reviewed by the QP prior to any subsurface work.

6.5. CONTAMINANT MIGRATION DURING DEWATERING

Changes to the hydraulic gradient could potentially influence the migration of contaminants from off-site properties. During dewatering activity, it is possible to alter the natural groundwater hydraulic gradient and cause dissolved contaminants to migrate onto nearby properties. It is recommended that a contaminant monitoring program be implemented during any active dewatering. The existing monitoring well network can be utilized for this program. Based on historic use across the Study Area, the risk of encountering contaminated groundwater is considered low.

6.6. LONG-TERM DRAINAGE

Typically, the installation of water mains and sanitary sewers will not require a permanent drainage system. The WTP building is understood to be designed as a watertight structure, and therefore long-term groundwater discharge will not be required for this project.

6.7. WELL DECOMMISSIONING (ONTARIO REGULATION 903)

In accordance with Ontario Regulation 903, all monitoring wells must be abandoned if they are no longer in use. This work must be completed by a licensed well-drilling contractor and abandonment records need to be filed with the Ministry of the Environment.

7. MONITORING AND MITIGATION

7.1. CONSTRUCTION DEWATERING MONITORING

The active construction dewatering stage will require monitoring designed to assess the potential for impacts to water levels in aquifers, water quality, and ground settlement. The monitoring program should include the following components:

- Discharge volume reporting
- Groundwater (piezometric) level monitoring
- Discharge water quality monitoring
- Surface Water monitoring
- Ground settlement monitoring

7.1.1. Discharge Volume Reporting

During active dewatering, the contractor will be required to document discharge pumping rates as a required condition of the EASR, with regular reporting of water taking volumes via the MECP Water Taking Reporting System. A flow meter should be supplied, and all discharged ground and storm water should be discharged through the properly field calibrated device. A non-resettable flow meter that records discharge in both instantaneous and cumulative modes is recommended. Daily recording of the discharge volumes will be required for regular reporting. The total combined daily discharge must never exceed the limits as outlined in the EASR. Additional storage measures (such as Extra tank storage or temporary settling ponds) can be used to control large rain events and reduce the instantaneous discharge/pumping rates. Further restrictions or conditions may be imposed through the enforced discharge agreement issued by the conservation authority.

7.1.2. Groundwater Level Monitoring

Where advanced dewatering systems are required (i.e. for the construction of the Well 5 Treatment Plant) a groundwater level monitoring program will be required. To verify the functionality of the dewatering system, groundwater monitoring wells/piezometers will be required to monitor the groundwater levels before, during and after construction. The excavation shall not be extended below the groundwater level until the piezometric pressure is depressed at least 1.0m below the targeted excavation base. This can be confirmed by measuring pressure levels in nearby piezometers installed by the dewatering contractor in areas within the expected zone of influence. Daily water levels should be measured and recorded in a log onsite to confirm that the target water levels are maintained throughout construction.

Excessive pumping is to be discouraged, and at no time should the drawdown extend beyond 1m. The discharge rates should be controlled to prevent over pumping of the groundwater.

7.1.3. Discharge Water Quality Monitoring

A monitoring program should be implemented that is based on the selected discharge option. Water pumped from the work area should be treated for suspended solids as necessary, prior to release. The dewatering discharge will be directed through a filter bag, splash pad, or settling tank prior to discharge to the natural environment. The monitoring program should consist of daily visual examination of the construction effluent for the presence of any sheen, foam, or odour. Water clarity and sediment level should also be monitored to ensure that the quality is not degrading during construction. Filters should be examined on a regular basis, and any failures to equipment should be repaired immediately.

Impacts on water quality can be controlled using safe construction practices that eliminate the potential for waste spills and other contamination events. Refuelling should be performed in designated areas away from open excavations, and on asphalt surfaces, supervised from start to finish. In the event of a spill, remedial action must be undertaken immediately by the contractor, following all MECP, Region of York, and provincial spill guidelines. The RMO for the Region of York should be contacted during any spill event.

Discharge Quality Monitoring for Sewer Release

For discharge to the sewer system (where available, and permitted), the discharge water will require pretreatment measures to keep sediment levels low, which would include use of filter cloth/gravel pack sumps, settlement tanks, and discharge through a filter bag. Regular monitoring will be required based on the following schedule:

- 1) Prior to discharge to sewer, a Regional Storm/Sanitary Sewer Use groundwater suite shall be collected and analyzed by a certified laboratory to confirm that the discharge quality meets the limits as outlined in the relevant sewer use table (storm/sanitary).
- 2) Periodic confirmation on a weekly basis while active dewatering / discharge is ongoing to confirm that the quality is maintained by way of lab testing for the relevant sewer use parameters.
- 3) Daily visual examination to identify and degradation to the water quality (i.e. sheen, foam, turbidity increases, etc.).

Discharge Quality Monitoring for Land Release (30m setback from Watercourse)

Discharge to the land surface will require a monitoring program to mitigate any impacts to the natural environment. A discharge area should be selected that is setback a minimum of 30m from any defined watercourse, and the area should be protected from land erosion/scouring with the use of stone/gravel/geomembrane. The discharge should be directed away from working areas and from entering private properties, and designed to eliminate risk of flooding/pooling by utilizing the natural gradients. Flow should be laminar and directed to a large area where infiltration can occur. The discharge water will require pre-treatment measures to keep sediment levels low, which would include use of filter cloth/gravel pack sumps, settlement tanks, and discharge through a filter bag. Regular monitoring will be required based on the following schedule:

1) Turbidity should be measured at the point of discharge to confirm that the levels are maintained below a target of 25 NTU's.

- 2) Prior to release, a water quality sample for general parameters including metals, total suspended solids, turbidity, inorganics and nutrients should be collected and analyzed by a certified laboratory and reviewed by a qualified person to confirm discharge quality is acceptable for release to land surface.
- 3) Daily visual examination to identify and degradation to the water quality (i.e. sheen, foam, turbidity increases, etc.).

Discharge Quality Monitoring for Land Release within 30m of a watercourse

At the Well 2 Site it is not possible to discharge to land surface with a suitable setback distance, and therefore enhanced monitoring requirements will be required to protect the watercourse. In addition to the monitoring requirements for discharge to land surface, the following enhanced measures will be required.

- 1) Prior to discharge and then periodically throughout the discharge activity, water sampling for general water chemistry (metals, anions, inorganics, nutrients, total suspended solids) shall be completed at the discharge point and upstream at the receiving watercourse.
- 2) The water quality will be compared to the Provincial Water Quality Objectives. Sampling shall be completed daily for the first 3 days of discharge.
- 3) Daily temperature and turbidity measurements shall be taken at the discharge location and in the upgradient water course.
- 4) Total suspended solids shall be compared to the turbidity measurements to calibrate a curve between the analyzed TSS and field measured turbidity to establish suitable correlation. Further sampling will not be required once the initial system is proven operational and that the pretreatment is suitable to meet the PWQO's. Daily turbidity measurements will be suitable to confirm operational status of the system after the initial 3-day period has expired.
- 5) If PWQOs can not be met, the pumping will be stopped, and treatment enhancement may be required. Any cessation due to a failing sample will restart the 3-day period and require reconfirmation of the suitability of treatment.
- 6) The discharge within 30m of the watercourse will require consultation with the MECP and TRCA prior to initiating.

7.1.4. Surface Water Monitoring

Based on the sensitivity and proximity of surface water features adjacent to Well 5, it is necessary to carry out some construction monitoring at these locations using the planned surface water stations that are to be installed as part of the ongoing Surface Water Study by EnVision. The monitoring should consist of level, turbidity, and temperature on a weekly basis during active construction work. The results shall be compared to readings obtained from an upstream location which will serve as the background station. The collected data must be reviewed by a Qualified Person (QP) to determine if any negative impacts are occurring upstream, near-site, and downstream across the construction period. The existing baselines show high variability, and therefore establishing quality triggers is difficult, however the QP shall be responsible for assessing the field data on a weekly basis to identify deterioration across the network of instruments. Turbidity triggers shall be established to ensure that

the surface water quality is not being impacted by construction activities. The trigger shall be established at the upstream location as 25 NTU above the background reading from the STN5-1. Exceedances to this trigger will result in a temporary stoppage of discharge so that the source of the degradation to the effluent can be investigated, with additional treatment implemented to bring the discharge water quality below the trigger threshold.

The Well 5 surface water feature will require monitoring of water levels during construction. At STN5-1, the water level information and drivepoint data must be monitored by way of programmable data logger to ensure that the existing natural hydraulic gradients remain unchanged during active dewatering. The QP shall review the data on a biweekly basis at these stations to ensure that there is no apparent reversal of the natural hydraulic gradients, as outlined in the baseline information.

7.1.5. Ground Settlement Monitoring

As discussed previously, structures located within the ZOI may be susceptible to potential settlement or subsidence during any temporary dewatering. The following monitoring and mitigation measures are recommended:

- Consider a pre-construction condition survey for the structures located within the ZOI;
- Install monitoring devices on nearby buildings and structures, and maintain scheduled monitoring during active dewatering;
- Prepare to reduce dewatering efforts if undesirable deformation conditions present.

It is understood that a geotechnical settlement analysis has been provided within the separate Geotechnical Investigation Report, prepared by EnVision, dated March 12, 2025. Results from the settlement analysis indicate predicted settlement ranging from 5 to 15mm are possible, which are considered "low" and within accepted values and that a pre- to post-construction condition survey is recommended for the project. Additional information is included in the geotechnical report, including a monitoring plan to mitigate the risk associated with dewatering induced settlement.

8. CLOSING

8.1. CONCLUSIONS

Based on the information obtained through the Hydrogeological Data Report, EnVision presents the following conclusions and recommendations:

- The Site is located entirely within the physiographic region in Southern Ontario known as the South Slope.
- The surficial material of glaciolacustrine deposits of clay to silt-textured till.
- The local bedrock within the Study Area is identified as the Georgian Bay formation; a mix of shale, siltstone, dolostone and limestone.
- The MECP WWR database indicated that there are one hundred and sixteen (116) water wells in the Study Area. Of the well records returned in the search, fourty-five (45) were classified as abandoned/unknown, forty-six (46) were classified as observation/monitoring/test holes and twenty five (25) were classified as water supply wells.
- The field investigation at the Well 2 site was carried out on December 6, 2023, which consisted of drilling three (3) boreholes (designated as BH2-1 to BH2-3) to depths ranging from 5.2m to 6.1m below the existing ground surface. Three (3) boreholes were completed as monitoring wells.
- The field investigation at the Well 5 site was carried out between October 19 and October 20, 2023, which consisted of drilling six (6) boreholes (designated as BH5-1 to BH5-6) to depths ranging from 1.5m to 9.7m below the existing ground surface. Three (3) boreholes were completed as monitoring wells.
- At the Well 2 Site, the monitoring wells were screened within the upper 6m of overburden, and water levels ranged from dry conditions at BH2-2 (in December 2023), to 1.9m BGS at BH2-2 (in May 2025). Groundwater levels at BH2-1 ranged from 1.6 to 2.6m, and at BH2-3 the levels ranged from 1.3m to 2.2m below existing ground across the monitoring site visits. The groundwater elevations over the monitoring period recorded on May 22, 2025 ranged from 263.2 to 264.0m ASL
- At the Well 5 Site, the monitoring wells were screened within the upper 9.2m of overburden, and water levels ranged from 6.9 to 5.7 at BH5-1, 6.4 to 5.1 at BH5-2, and dry to 5.5m at BH5-4. The groundwater elevations over the monitoring period recorded on May 22, 2025 ranged from 254.9 to 255.7m ASL
- Results from the Well 2 Site monitoring well, BH2-1 indicate one (1) exceedance when compared to the parameters under York Region storm sewer release limit. The lone exceedance was reported for total suspended solids. The results from the well sampling had no reported exceedances against the sanitary sewer release limits.
- Results from the monitoring well, BH5-2 indicate one (1) exceedance when compared to the parameters under York Region sanitary sewer release limit. The exceedance includes total suspended solids. The results also indicate two (2) exceedances when compared to the parameters under York Region storm sewer release limit. The exceedances include total suspended solids and total manganese.

- Construction dewatering rate estimates for work at the Well 2 Facility range from 2,400 to 47,100
- L/day.
- Construction dewatering rate estimates for work at the Well 5 Facility range from 3,920 to 94,410 L/day.
- Based on the predicted daily water taking rates, the future construction dewatering should be managed through an Environmental Activity and Sector Registry (EASR) for short-term construction dewatering activities (O. Reg. 63/16).
- Discharge may be managed through conveyance to land surface, provided the monitoring and mitigation plans are followed, and approval is granted by the regulatory agencies.
- Discharge may be managed through conveyance to the municipal sewer system, provided that agreement is obtained under the Sewer Use By-law.
- A construction dewatering monitoring and mitigation plan has been developed and must be adhered to, as per Ontario Regulation 63/16.

8.2. QUALIFICATION OF THE ASSESSORS

Robin Byers, P.Geo., B.Sc. is a Senior Hydrogeologist and is a practicing member of the Professional Geoscientists of Ontario with over 11 years of hydrogeological experience working in the Greater Toronto Area and Southern Ontario. He has experience in physical and chemical hydrogeology with foundational knowledge of well construction and design, groundwater modeling, pumping test analysis, and construction dewatering. Rob is also a qualified person as defined by O.Reg 63/16 for purposes of preparing water taking and discharge plans.

8.3. CERTIFICATION AND SIGNATURES

EnVision confirms the findings and conclusions of the Hydrogeological Investigation.

Prepared by

DRAFT Sam Harding, B.Sc., Environmental Scientist sharding@envisionconsultants.ca Reviewed by

DRAFT Rob Byers, B.Sc., P.Geo., Senior Hydrogeologist rbyers@envisionconsultants.ca

8.4. QUALIFIER

EnVision prepared this report solely for the use of the intended recipient in accordance with the professional services agreement. In the event a contract has not been executed, the parties agree that

the EnVision General Terms and Conditions, which were provided prior to the preparation of this report, shall govern their business relationship.

The report is intended to be used in its entirety. No excerpts may be taken to be representative of the findings in the assessment. The conclusions presented in this report are based on work performed by trained, professional and technical staff, in accordance with their reasonable interpretation of current and accepted engineering and scientific practices at the time the work was performed.

The content and opinions contained in the report are based on the observations and/or information available to EnVision at the time of preparation, using investigation techniques and engineering analysis methods consistent with those ordinarily exercised by EnVision and other engineering/scientific practitioners working under similar conditions, and subject to the same time, financial and physical constraints applicable to this project.

EnVision disclaims any obligation to update this report if, after the date of this report, any conditions appear to differ significantly from those presented in this report; however, EnVision reserves the right to amend or supplement this report based on additional information, documentation or evidence.

EnVision makes no other representations whatsoever concerning the legal significance of its findings. The intended recipient is solely responsible for the disclosure of any information contained in this report. If a third party makes use of, relies on, or makes decisions in accordance with this report, said third party is solely responsible for such use, reliance or decisions. EnVision does not accept responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken by said third party based on this report.

EnVision has provided services to the intended recipient in accordance with the professional services agreement between the parties and in a manner consistent with that degree of care, skill and diligence normally provided by members of the same profession performing the same or comparable services in respect of projects of a similar nature in similar circumstances. It is understood and agreed by EnVision and the recipient of this report that EnVision provides no warranty, express or implied, of any kind. Without limiting the generality of the foregoing, it is agreed and understood by EnVision and the recipient of this report that EnVision makes no representation or warranty whatsoever as to the sufficiency of its scope of work for the purpose sought by the recipient of this report.

In preparing this report, EnVision has relied in good faith on information provided by others, as noted in the report. EnVision has reasonably assumed that the information provided is correct and EnVision is not responsible for the accuracy or completeness of such information.

Unless otherwise agreed in writing by EnVision, the Report shall not be used to express or imply warranty as to the suitability of the site for a particular purpose. EnVision disclaims any responsibility for consequential financial effects on transactions or property values, or requirements for follow-up actions /or costs. This limitations statement is considered an integral part of this report.

9. REFERENCES

Katanchi, B., & Cole, J. (2018). *Class Environmental Assessment for Water and Wastewater Servicing in the Community of Nobleton*. Palmer Environmental Consulting Group INC.

- Katanchi, B., & Cole, J. (2018). *Class Environmental Assessment for Water and Wastewater Servicing in the Community of Nobleton.* Palmer Environmental Consulting Group INC.
- Kyrieleis, W., & Sichardt, W. (1930). Grundwasserabsenkung bei Fundierungsarbeiten. Berlin.
- Ministry of Environment, Conservation and Parks. (2018, October 1). *Well records*. Retrieved from Ontario.ca: https://www.ontario.ca/page/well-records
- Ministry of Northern Development, Mines and Forestry. (2013, April). Surficial geology of southern ontario. Sudbury, Ontario.
- Ministry of the Environment, C. a. (2018, Sep 24). *Access Environment*. Retrieved from http://www.gisapplication.lrc.gov.on.ca/AccessEnvironment/IndexAccEnv.html?viewer=AccessEnv ironment.AE&locale=en-US
- Ministry of the Environment, Conservation and Parks. (2021, Nov). *Source Water Protection Atlas*. Retrieved from

https://www.lioapplications.lrc.gov.on.ca/SourceWaterProtection/index.html?viewer=SourceWaterProtection.SWPViewer&locale=en-CA

- Sharpe, D. (1980). Quaternary Geology of Toronto and Surrounding Area: Ontario Geological Survey Preliminary Map P2204.
- Toronto and Region Conservation Authority. (2022). *Humber River*. Retrieved from trca.ca: https://trca.ca/conservation/watershed-management/humber-river/

	/(*(1'	
	()	
	6-1 %281'\$5< (//	
	 ·\$7(5&2856)	
	:\$7(5%2'<	
	· + 3 \$ \$	
	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	
/	······································	
2		
4		
A DA		
11:28		
A Start		
COLUMN S		
Ter al		
TET I		
The second		
210 K		
N. E.		
1203		
No. No.		
and the		
No. Contra		
1000		
Mer.		
日日大		
S ANALS		
A STATE	7 – 7 / (
加快	6285&(:\$7(5 3527(&7-21 \$5(\$6 :(//+(\$' 3527(&	7 –
ALC: NO		
13.15	^{352-(&7} +<'52*(2/2*-&\$/ -19(67-*\$7-21	
11	(//) $(//)$	
11100	$12\%/(721\ 217\%) - 2$	
5	&/-(17	
Card I	(72 (1*-1((5-1*	
100-10-10-10-10-10-10-10-10-10-10-10-10-	352-(&7 12 '\$7(35(3\$5(' % ≮ \$33529(' % <)-*85(
V	-81(73 5%	

	_
/(*(1' 6-(%281'\$5< :(// 6-(%281'\$5< :(// 678'< \$5(\$:\$7(5&2856(:\$7(5%2'< ' */\$&-2/\$&8675-1('(5-9(' 6-/7<72 &/\$<(< 7-/
7-7/(685)-&-\$/ *(2/2*< 2) 7+(678'< \$5(\$) $352^{-}(\&7_{+}<'52*(2/2*-\&$/ -19(67-*$7-21))))$:(//))\$5-6 \$9(18)	-
$\frac{(77 + 7) (35 - 5) (35 + 5) (15)}{(77 + -* + : \$ < 12\%/(721 - 217\$5 - 2))}$ $\frac{(72 + (17)}{(72 + 1) (5 - 1)}$ $\frac{(72 + (1* - 1) ((5 - 1))}{(5 - 1) (5 - 1)}$ $\frac{(72 + (1* - 1) ((5 - 1))}{(5 - 1) (5 - 1)}$	_

1 2	/(*(1	•							
1			% 281	'\$5~		())			
i		0 - 1	/0 2 0 1	ψυ<	•	(/ /			
200		6 – 7	% 2 8 1	'\$5<	:	(//			
N 214			678'<	\$5(\$					
1		:\$7(5	& 2856	5 (
0		¢7(5	0/2/-	·					
No and		. \$7 (5	70 2 <						
	0(&3	:\$7(5	:(//	/2&\$7-	- 2	1			
Post-	\bigcirc	\$ % \$ 1	'21('						
Sec. 1	•	021-	725–1	* \$1'	7 (67 +2/(
5	0	2%6(59\$7_	$21 \cdot ()$	/ 6				
-		2,00(<u> </u>	, 0				
- NN	\bigcirc	:\$7(5	6833	/<					
-	0	81.12	2:1						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
-									
-									
-									
No. of Contraction									
-									
-									
-									
	7 – 7 / (
			()(&3:	\$7	(5:(///2	& \$	7 – 2 1 6	
-				•	-			-	
	352-(8	k7 .							
		+<'5	2*(2/2 (//	/ * – & \$ / ۱ ۴ ۶	-	19(67-*\$ \$ \$ \$ 4 4 9 4	57 –	21	
		:((77	· د ډ (- +	- ю - * -	ุ จุษ(⊺ช(+:\$<			
		- ()	12%/(721	2 1	7\$5-2			$\langle \rangle \rangle$
	&/-(17	,						1	V J
-	((72	(1*-1((5	5-1*			
	352-(8	\$7 12	'\$7(35(3\$5('%	< \$ 3	33529(' %	<) – * 8 5 (
/	υнν		-81(73	5	%	

	/(*('	0 2 1 –	%281'\$5< &2856(+2/(/2&\$7- 725-1*:(//	:(// -21			
and the second s							
and the second se	7 - 7 / (&7 +<'5 :	% 2 5 (+ 2 / 2 * (2 / 2 * - & \$ / (/ /) \$ 5	(/2&\$7-21 -19(67-*\$ -6 \$9(18(3 / \$ ⁻ \$ 7 - 2 1	1 : (/,	
	& / - (1 3 5 2 -)	. (7 [&7 12	(72 (1*-1) ([*] \$7(-81)	$(5-1)^{35}$	6<\$33 5%	529(' %	-*85(

Α

A'

В

	/(*(1'				
		%281'\$5< :	(//		
	: \$ 7 5	& 2856(
		25 1* • (//			
		23,1 .(//			
Ľ					
3					
15					
2					
il.					
1					
à					
12					
Č.					
3					
2					
ė					
	7,7/(
		*5281':\$7(5 (/(9\$7.2	216 :(//	
		(、、·····	(···	
	352-(&7	D*/0/0* 0 # /	10/07 ***	24	
	+<`52	∠ (∠/∠¨,&\$/ ,¨ [//)\$5.6	ישטטי, "אַר, \$9(18(
	: (/	// + ,* +	⊦:\$<	1/-	λ
		12%/(721 21	7\$5,2		\mathbf{V}
	&/,(17	(7) /4* 4//5	1 *		
		(72 (17,1((5	, I		
	352-(&7 12	' \$ 7 (35(3\$5('%	<\$33529('%	<),*85(
w	ЛΗΛ	0\$<	73	5 %	

A STATISTICS IN CONTRACTOR	/(*(1	5,7 :\$75 7232	%281'\$5< &2856(*5\$3+,&&	217	2856	P\$6/		
M	"	% 2 5 (+2/(/2&\$	7,2	1			
	(")	021,7	725,1*:(//	/				
/								
Contraction of the								
100								
CONTRACT OF								
11 AP								
Sec. 17								
Ser 10								
No.								
Station of the								
and the second								
1000								
11221								
100								
100								
2								
10 5								
	7,7/(_		
			*5281':	\$7(5 (/(9\$	7,21	6 :(//	
	352-(&7 +<'5	2*(2/2*.&9	5/ .	19(67.*	\$7.2	1	
		:((//)\$	5,6	\$9(18	(
		: (7	, , 1 2 % / (7 2 1	+, + 21				$\langle \rangle$
	&/,(17	,						•/
			(72 (1*,7	1((5	,1*			
82	352-(&7 12	'\$7(0\$~		35(3\$5(' %<\$ 5	33529('%	<),*85(
N	ΊΗΛ		υψ <u>ς</u>		13	5	,0	

Well ID	Final Status	Water Use	Easting	Northing	Depth (m)
6902446	Water Supply	Commerical	608052.6	4861756	23.47
6902438	Water Supply	Commerical	608165.6	4861812	24.38
6902331	Water Supply	Commerical	608211.6	4861949	83.82
6902320	Water Supply	Commerical	608268.6	4861770	22.25
6902453	Water Supply	Domestic	608197.6	4861301	13.72
6902452	Water Supply	Domestic	607835.6	4861516	24.69
6902449	Water Supply	Domestic	607905.6	4861482	29.26
6902448	Water Supply	Domestic	607865.6	4861626	35.36
6902447	Water Supply	Domestic	607839.6	4861705	31.39
6902445	Water Supply	Domestic	608005.6	4861757	32.61
6902444	Water Supply	Domestic	607966.6	4861670	14 94
6902443	Water Supply	Domestic	607871.6	4861568	27.43
6902442	Water Supply	Domestic	608153.6	4861732	12.80
6902442	Water Supply	Domestic	607955.6	4861664	9 75
6902441	Water Supply	Domestic	607974.6	4861507	12.80
6902440	Water Supply	Domestic	607810.6	4861658	22.53
6902433	Water Supply	Domestic	608246.6	4801038	12 10
60022455	Water Supply	Domestic	608410.6	4801385	70.22
6002222	Water Supply	Domestic	608419.0	4801018	12.10
6002323	Water Supply	Domestic	608210 6	4801842	2.19
6002221	Water Supply	Domestic	608310.0	4801414	0.75
7200707	Water Supply	Municipal	609245	4801481	5.75
6008528	Water Supply	Municipal	608245	4801437	02.99
6003458	Water Supply	Municipal	608068.6	4601996	93.00
6902458	Water Supply	Dublic	608068.0	4801094	111.00
5902454	Water Supply	PUDIIC	607599.6	4861634	40.23
7411020	Unknown		608313	4861966	
7411019	Unknown		000000	4861964	
7411010	Unknown		608176	4001931	
7374325	Unknown		608176	4001025	
7307055	Unknown		608307	4001343	
7304712	Unknown		608517	4001112	
7304711	Unknown		607547	4001304	
7317956	Unknown		607551	4001774	
7317337	Unknown		607515	4801728	
7259714	Unknown		608058	4001079	
7253608	Unknown		609114	4801182	
7234178	Unknown		609291	4801120	
7245559	Unknown		608170	4802108	
7240408	Unknown		608103	4801857	
7234330	Unknown		609247	4802030	
7232427	Unknown		608402	4801034	
7232097	Unknown		609249	4801001	
7232030			608101	4862020	
7216444	Linknown		608402	4861661	
7210444			6083492	4861602	
7210443	Unknown		607545	4801003	
720317			608204	4862041	
7202199	Unknown		608105	4802041	
7178816			608305	4861842	
7101121			608170	4801042	A1 1A
7101121			608179	4861420	41.14
6030551	Linknown		608355	4861500	102.41
7187059		Monitoring and Test Holo	608172	4861616	3 06
7187702	Test Hole	Monitoring and Test Holo	608165	4861619	4 57
7150/06	Test Hole	Monitoring and Test Holo	608103	4861018	5.40
6902450	Test Hole	Not Llead	607785.6	4861705	A8 77
6902457	Test Hole	Not Used	607959.6	4861502	116.13
6902456	Test Hole	Not Used	607932.6	4861663	111.15
6902450	Test Hole	Not Lised	607606 6	4861619	28 71
6902450	Test Hole	Not Used	607997.6	4861659	46.63
6902303	Test Hole	Not Used	608312 6	4861964	92.96
0002070	i cot noic	101 0300	000012.0	-00100-	52.50

Notes On Sample Descriptions

 All sample descriptions included in this report generally follow the Unified Soil Classification. Laboratory grain size analyses provided by SPL also follow the same system. Different classification systems may be used by others, such as the system by the International Society for Soil Mechanics and Foundation Engineering (ISSMFE). Please note that, with the exception of those samples where a grain size analysis and/or Atterberg Limits testing have been made, all samples are classified visually. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.

ISSMFE SOIL CLASSIFICATION												
CLAY		SILT			SA	ND		G	RAVEL		COBBLES	BOULDERS
	FINE	MEDIUM	COAR	SE FINI	E ME	DIUM COA	RSE FIN	IE M	EDIUM	COARSE		
	0.002	0.006 	0.02	0.06 I EQUIVA	0.2 I LENT G	0.6 I GRAIN DIAME	2.0 I TER IN M	6.0 I ILLIMETR	20 RES	60	20	0
CLAY (PLASTIC) TO FINE MEDIUM CRS. FINE COARSE												
SILT (N	ONPLASTIC)				SAND			GRAV	/EL]	
SILT (N	ONPLASTIC)				SAND			GRAV	'EL	_]	

UNIFIED SOIL CLASSIFICATION

- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional preliminary geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

Explanation of Terms Used in the Record of Borehole

Sample Type

- AS Auger sample
- BS Block sample
- CS Chunk sample
- DO Drive open
- DS Dimension type sample
- FS Foil sample
- NR No recovery
- RC Rock core
- SC Soil core
- SS Spoon sample
- SH Shelby tube sample
- ST Slotted tube
- TO Thin-walled, open
- TP Thin-walled, piston
- WS Wash sample

Penetration Resistance

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in) required to drive a 50 mm (2 in) drive open sampler for a distance of 300 mm (12 in).

WH - Samples sinks under "weight of hammer"

Dynamic Cone Penetration Resistance, Nd:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in) to drive uncased a 50 mm (2 in) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in).

Textural Classification of Soils (ASTM D2487-10)

Classification	Particle Size			
Boulders	> 300 mm			
Cobbles	75 mm - 300 mm			
Gravel	4.75 mm - 75 mm			
Sand	0.075 mm - 4.75 mm			
Silt	0.002 mm - 0.075 mm			
Clay	<0.002 mm(*)			
(*) Canadian Foundation Engineering Manual (4 th Edition)				

Coarse Grain Soil Description (50% greater than 0.075 mm)

Terminology	Proportion (*)			
Trace	0-10%			
Some	10-20%			
Adjective (e.g. silty or sandy)	20-35%			
And (e.g. sand and gravel)	> 35%			
(*) Canadian Foundation Engineering Manual (4 th Edition)				

Soil Description

a) Cohesive Soils(*)

Consistency	Undrained Shear Strength (kPa)	SPT "N" Value
Very soft	<12	0-2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very stiff	100-200	15-30
Hard	>200	>30

(*) Hierarchy of Shear Strength prediction

- 1. Lab triaxial test
- 2. Field vane shear test
- 3. Lab. vane shear test
- 4. SPT "N" value
- 5. Pocket penetrometer

b) Cohesionless Soils

Density Index (Relative Density)	SPT "N" Value		
Very loose	<4		
Loose	4-10		
Compact	10-30		
Dense	30-50		
Very dense	>50		

Soil Tests

w	Water	content

- w_p Plastic limit
- wı Liquid limit
- C Consolidation (oedometer) test
- CID Consolidated isotropically drained triaxial test
- CIU consolidated isotropically undrained triaxial test with porewater pressure measurement
- D_R Relative density (specific gravity, Gs)
- DS Direct shear test
- ENV Environmental/ chemical analysis
- M Sieve analysis for particle size
- MH Combined sieve and hydrometer (H) analysis
- MPC Modified proctor compaction test
- SPC Standard proctor compaction test
- OC Organic content test
- U Unconsolidated Undrained Triaxial Test
- V Field vane (LV-laboratory vane test)
- γ Unit weight

CONSUL	TANTS LTD				LO	g oi	= BOF	REF	101	E	BH	2-1											1	OF 1
PROJ	IECT: Nobleton Well 2 Upgrades																			REF.	. NO.	: 23-	0358	
CLIEN	NT: ETO Engineering							Met	hod:	Soli	id St	tem /	Auge	er						ENC	L NO).:		
PROJ	JECT LOCATION: 22 Faris Avenue, Nob	letor	1					Dia	mete	er: 15	50m	m								ORIC	GINA	TED	BY G	R
DATU	JM: Geodetic			Dat	e: D)ec-C)6-2	023	to E	Dec-	06-20	023				CON	1PILE	D BY	/ C	S				
BH LO	DCATION: N 4861733.5 E 608018.3							Equ	iipm	ent:	Drill	Tec	h N	15T ⁻	Track	kmou	nted I	Rig		CHE	CKE	D BY	S	D
	SOIL PROFILE		S	SAMPL	ES				S	oil H	lea	d Sp	bace	e Va	pors	3		NA	TURAL			г	REN	/ARKS
(m)		⊢				TER				PID				C	GD		PLA LIMI	T CC	ISTURE	LIQUI	ı Z	ALT W	A	ND
(III) ELEV		PLO.			SSε	o WA	z		()	ppm	1)			(r	opm))	W _P		w	WL	KET F (KPa	AL UN N/m ³)	GRA	IN SIZE
DEPTH	DESCRIPTION	ATA	BER		BLO 0.3	UND	ATI								> ?				CONTEN	IT (%)	POC DO	ATUR (k	DISTIN	(%)
265.6	Ground Surface	STR.	NUN	ITYPI	z	GRO	ELE	1	0 2	0 3	0 4	0	1(0 20	30	40		10	20 3	30		z	GR SA	SI CI
260.0	ASPHALT: 125mm	\sim					Flush	nou	nt co	ver													-	-
265.1	355mm FILL , sand and gravel,	\bigotimes	1A	SS	6		0						•					0						
- 0.5	clay, brown, moist, loose	\bigotimes	<u>1B</u>				265	-									-		<u>a</u>		1			
1	FILL: silty clay to clayey silt, some	\bigotimes	2	SS	16		-Bento	L nite				•	•						o					
264.4	wet, firm to very stiff	KX IA	 				Donto																	
- 1.2	SILTY CLAY TILL TO CLAYEY		3	SS	28		264						•					0			>250			
F	gravel, brown, moist, very stiff to		<u> </u>			·. ·.	204	Ē																
-	hard		1				Sand	È.																
E					Ē																			
262.8			4A	SS	32		W. L. 2 Dec 08	263.2 3. 20	2 m_ 23				•					0			125			
.26 2 :0	SILTY SAND: some clay, trace		に目い		Ë.										0									
3.0	SILTY CLAY TILL TO CLAYEY					1日		Ē																
-	SILT TILL: some sand, trace		5	SS	33	l:∃:		۲ 				•	>					0			>250			
E	gravel, grey, moist, very sun to hard					目	Scree	n E																
<u>-</u> 4			6	ss	55			-					•					∘ ⊢	_		>250		1 17	7 64 18
Ē						E										1	-							
Ē					261											-			1					
- 5			7	SS	24	l E						•	•					o			>250			
- 260.4					-								_	-										
0.2	Notes:																							
	1) Borehole was open and unstabilized water measured at																							
	4.0m below ground surface upon																							
	2) Borehole was straight augered																							
	from 4.6m to 5.2m for a monitoring																							
	3) Monitoring well was installed																							
	upon completion of drilling,																							
	Water Level Readings: Date W.L. Depth (m)																							
	Dec 08, 2023 2.41																							
<u>م</u>																								
GPJ 24																								
8 ,2023.																								
ON 2 JAN																								
NOBLET																					1			
23-03581																								
16-R02 2																					1			
PMJ-201																								
D CGD/F																								
NA (MPC																					1			
ROPID(
EW																					1			
GROUN	IDWATER ELEVATIONS					<u>GRAPH</u> NOTES	+ 3,	×3	Nui to S	mbers	s refe tivitv	er	0	8 =3°	[%] Stra	ain at f	ailure							

 $\begin{array}{c} \underline{\text{GROUNDWATER ELEVATIONS}} \\ \text{Measurement} \quad \underbrace{\stackrel{1 \text{st}}{\underline{\bigvee}} \quad \underbrace{\stackrel{2 \text{nd}}{\underline{\bigvee}} \quad \underbrace{\stackrel{3 \text{rd}}{\underline{\bigvee}} \quad \underbrace{\stackrel{4 \text{th}}{\underline{\bigvee}}} \end{array}$

CONSUL	TANTS LTD				LO	g of	F BOF	REHO	LE	BH	2-2												1 OF	- 1
PROJ	IECT: Nobleton Well 2 Upgrades																	I	REF.	NO.:	23-	0358		
CLIEN	NT: ETO Engineering							Method	: Sol	lid St	em /	Auger						I	ENCL	NO	.:			
PROJ	IECT LOCATION: 22 Faris Avenue, Nob	letor	I					Diamet	er: 1	50m	m							(ORIG	INA	ED I	BY (GR	
DATU	JM: Geodetic							Date: I	Dec-(06-20	023	to De	ec-06-	2023				(COM	PILE	D BY	· (CS	
BH LO	DCATION: N 4861751 E 608012.9							Equipm	ent:	Drill	Tecl	n M5	T Tra	ckmc	ounte	ed Rig	9	(CHE	CKE) BY	9	SD	
	SOIL PROFILE		s	AMPL	ES	~		5	Soil I	Hea	d Sp	ace	Vapo	rs				URAL			F	REI	MARK	S
(m)		1				ATER			PID)			CG	D	1	LIMIT	CON	TURE	LIMIT	PEN. 'a)	NIT V			7-
ELEV	DESCRIPTION	PLO	с		3 m	NOI:	NOI		ppn	1)			(ppr	11)	ľ	W _P	\	v 5	WL	CKET (kF	RAL L	DIST	RIBUTI	ION
DEPTH		RAT/	MBE	Ц	-Ш.	NUO	EVAT			24		e	\geq			WAT	TER CO	ONTEN	T (%)	00 00	NATU		(%)	
266.0	Ground Surface	STE	R	īΥī	ż	RS	<u> </u>	10	20 3	80 4	0	10	20	30 4	0	1	0 2	20 3	0			GR S	A SI	CL
26 9 .0	TOPSOIL: 205mm		1	22	6		-Flushi	nount c	over								0							
265.3	sand to sandy, trace gravel, trace	\bigotimes		00							Ĩ	ĺ					Ũ							
0.6	SILTY CLAY TILL TO CLAYEY		2	~~	25		0.01										~ L					2 1	2 60	25
	SILT TILL: some sand, trace			33	25		265															2 1	3 00	20
E	hard			6	04		-Bento	nite												× 050				
				33	24			-				,					Ŭ			-250				
2							264	-																
Ē		1º	4	SS	35			4			4	,					0			>250				
_ <u>2</u> 63.0							Sand 263																	
3.0 262.7	SILTY SAND: some clay, trace gravel, brown, wet, inferred compact_		5A														o							
- 3.3	SILTY CLAY TILL TO CLAYEY		5B	SS	22	目					f	•					o			188				
-	SILI TILL: some sand, trace gravel, brown, moist to wet, very stiff																							
-	to hard		6	SS	69	日	262	1				2					0			>250				
-	grey					:目:						\setminus												
-						目	Scree	n L				Ι												
5			7	SS	26	l: E:	261	-	-			2	<u>۴</u>				0			>250				
-			8	22	27	日	1,	ā					J.				0			>250				
-			Ľ	00	21		260	-					Ĭ							200				
<u>~259.9</u> 6.1	END OF BOREHOLE:	IX X				.; . 	200	-																—
	Notes: 1) Barabala was apon and																							
	unstabilized water measured at																							
	5.8m below ground surface upon completion of drilling.																							
	2) Borehole was straight augered																							
	well installation																							
	3) Monitoring well was installed upon completion of drilling,																							
	screened from 3.1m to 6.1m.																							
	Water Level Readings:																							
	Date W.L. Depth (m) Dec 08, 2023 Dry																							
-1-9																								
3.GPJ 24																								
NN 8, 202																								
ETON 2 J																								
58 NOBLI																								
12 23-03																								
-2016-R(
0GD/PPM																								
4) AND C																								
PID(PPI																								
ENVIR																								
00011						GRAPH	, 3	√3. Ni	ımber	s refe	r	~ 8	=3%											

_																										
	PROJ	ECT: Nobleton Well 2 Upgrades												REF.	NO.	: 23-	0358									
	CLIEN	IT: ETO Engineering							Me	thod	: Sol	id Ster	n Au	ger							ENCI	_ NO	.:			
	PROJ	ECT LOCATION: 22 Faris Avenue, Not	letor	ı					Dia	amete	er: 1	50mm									ORIG	SINA	TED	BY	GR	
	DATU	IM: Geodetic							Da	te: D)ec-(06-202	3 to	Dec-	06-2	023					СОМ	PILE	DΒ	(CS	
	BH LC	DCATION: N 4861701 E 608028.4					i	. <u> </u>	Eq	uipm	ent:	Drill Te	ech	M5T	Trac	kmοι	unte	ed Rig	g		CHE	CKE) BY		SD	
		SOIL PROFILE		S	SAMPL	.ES	ſ			S	ioil I	lead	Spac	ce Va	apor	S		PLAST		URAL	LIQUID		Υ	R	EMARKS	;
	(m)		5			(0)	'ATEI S			(PID))		(CGD)			CON	TENT	LIMIT	- PEN. Pa)	UNIT \	GF	AND	F
	ELEV	DESCRIPTION	APL	Ř		.3 m		NOIT				''		•		,		•••p		o	•••L	Cu) (k	JRAL (kN/m	DIST	RIBUTIO	- DN
	DEPIH		RAT	IMBE	Щ		UNOS	EVA						•		-		WAT	FER CO	ONTEN	IT (%)	PO	NATI		(%)	
	264.6	Ground Surface	ST	z	≽	Ž	53	Eluch		10 2	0 3	0 40		10 2	0 30) 40		1	0 2	20 3	30			GR 🕄	SA SI	CL
Ī	269.9	350mm FILL, gravelly sand, some	\bigotimes	1A	~~~	10		Friusi	E									c						26 3	52 (2	2)
ŀ	0.5	— silt, trace clay, brown, moist,	₩	1B	- 33	12		264	-				–												- (-	-,
Ē		FILL: silty clay to clayey silt, some	\bigotimes	2	SS	18			E										He					4	25 52	10
	263.4	sand to sandy, trace gravel, brown,	\bigotimes					-Bento	nite				Ĭ												-0 02	
ł	1.2	SILTY CLAY TILL TO CLAYEY		2	99	22																>250				
ł		SILT TILL: some sand, trace gravel, brown, moist, very stiff			00	22	∇	263	T				Ť									200				
	262.5			1				W. L. Dec 0	262 8, 2	.8 m 023																
ł	2.1	gravel, brown, wet, inferred compact	Í										0													
ł	262.0	SILTY CLAY TILL TO CLAYEY				•				_			0		125											
	3	SILT TILL: some sand, trace		ŀ													125									
		to hard				0.5	1日		Ē																	
ł	-		H.	5	55	35		2001	F				-						0			>225				
			1				1日	Scree	en F																	
ł	4	drov		6	SS	48	:==:						•						0			175				
ł		grey		1			目		Ē																	
ł							Į∶⊟÷	260																		
	5 250 /		181	7	SS	25			Ē				•						0			225				
f	5.2	END OF BOREHOLE:																								-
		Notes: 1) Borehole was open and																								
		unstabilized water measured at																								
		completion of drilling.																								
		from 4.6m to 5.2m for a monitoring																								
		well installation 3) Monitoring well was installed																								
		upon completion of drilling,																								
		screened from 2. In to 5.2m.																								
		Water Level Readings: Date W.L. Depth (m)																								
		Dec 08, 2023 1.80																								
24-1-8																										
23.GPJ																										
JAN 8 ,20																										
ETON 2																										
358 NOBL																										
302 23-00																										
A)-2016-F.																										
CGD/PPA																										
M) AND																										
O PID(PF																										
ENVIR																										

LOG OF BOREHOLE BH2-3

1 OF 1

 $\begin{array}{c|c} \underline{GROUNDWATER ELEVATIONS} \\ \hline Measurement & \underline{\overset{1st}{\underline{\vee}}} & \underline{\overset{2nd}{\underline{\vee}}} & \underline{\overset{3rd}{\underline{\vee}}} & \underline{\overset{4th}{\underline{\vee}}} \end{array}$

 $\frac{\text{GRAPH}}{\text{NOTES}} + {}^3, \times {}^3: \text{ Numbers refer}$ to Sensitivity

O^{8=3%} Strain at Failure

-	CONSUL	ANTS LTD				LO	GΟ	f Boi	REI	HO	LE E	3H5-	-1												1 (OF 1
Γ	PROJ	ECT: Nobleton Well 5 Upgrades																			REF.	NO.	: 23-	0358	3	
	CLIEN	IT: ETO Engineering							Me	thod	: Solic	d Sten	n Au	ger							ENCI	_ NO).:			
	PROJ	ECT LOCATION: 12860 York Regional	Road	d 27,	Noble	ton			Dia	mete	er: 15	0 mm									ORIG	SINA	TED	BY	NL	
	DATU	M: Geodetic		Dat	te: C	Oct-19	-2023	3 to	Oct-	19-20	023					СОМ	PILE	DB	(CS						
┢	BH LC	DCATION: N 4861432.5 E 608166.9	50		1	Eq.	uipm	ent: C	Drill Te	ech	M5T	Trac	ckmc	unte	ed Ri	g		CHE		D BY		SD				
		SOIL PROFILE	-			ES	К		_	5		ead	Spa	ce v	apo	rs ¬		PLAST		URAL STURE	LIQUID		۲.	R		RKS
	(m)		[d			SI C	NS NS			(ppm))			(ppn	ך ו)		W _P	CON	ITENT N	WL	KPa)	- UNIT سُ	G	RAIN	SIZE
<u> </u>	ELEV EPTH	DESCRIPTION	TAP	ËR		<u>3LOV</u>		ATIO			\geq	-		•	>	_				o		(CU)	TURA (kN	DIS	TRIBU	JTION
	061.0	Cround Surface	STRA	NUME	LYPE	"Z	SRO(ELEV		10 2	20 30	40		10	20 3	0 4	5	WA'	TER CO 10 2	20	т (%) 30	–	₹	GR	ςΔ	
1	261.2 260.0	TOPSOIL: 130 mm	×1//.	-		-		261	-																	
È	0.1	FILL: silty clay to clayey silt, some sand to sandy, trace gravel, trace	\otimes	1	SS	10		201	T T				19						o							
Ē		rootlets, trace organics, brown,	\bigotimes						ŧ\																	
-			\bigotimes	2	SS	10							€						0	 	4			4	16 క	51 29
Ē			\bigotimes					260	-																	
E			\otimes		~~				E	Ι				λ												
2	250 N		\otimes	3	55	20			È	\mathbb{N}					\succ											
-	2.2	SILT: trace clay, trace to some	M	1				259			N						70									
Ē		sand, trace gravel, brown, moist to wet, very dense		4	SS	53			È			¥					10	•	0							
-								-Bento	nite r																	
Ē				5	SS	52		258	-					-			125	•	0							
Ē				Ľ		02			E																	
4									È			Ν					100									
Ē				6	SS	71		257	-	-		-/*	1	-			-	•	c							
Ē									È								100									
-				7	SS	80			Ē			¥					100	•	c					2	78	34 7
-								256	-																	
Ē									Ē																	
Ē								·	Ē																	
6								+Sand	-																	
E				8	SS	67		. 200	Ē		#						55	•		•						
Ē									È																	
7								W. L.	⊦ 254.	 3 m	/															
Ē								Oct 25	5, 20 H	237							71					1				
Ē								Scree	n I							/										
8				9	SS	59	¦∙₿.		Ē	Ŧ						\$				0						
Ē								253	-																	
Ē							¦∶₿:		Ē						1/											
9								· ·	Ē																	
Ē		containing silty clay layers		10	SS	87		252 Bento	r nite			-	-				_			0						
Ē	<u>251.7</u> 9.6	END OF BOREHOLE:				<u> </u>			F	-			+				_									
		Notes: 1) Borehole was open and																								
3.GPJ 24		unstabilized water measured at																								
EC 8, 202		completion of drilling.																								
ETON 5 D		 Monitoring well was installed upon completion of drilling, 											1													
58 NOBLE		screened from 6.1m to 9.1m.																								
02 23-03		Water Level Readings:																								
022.GLB M)-2016-R		Oct 25, 2023 6.94																								
APRIL5-21 CGD/PPN		Dec 12, 2023 /.11																								
PPM) AND																										
ISION-SO IRO PID(F																										
N N N								1																		

 $\begin{array}{c} \underline{\text{GROUNDWATER ELEVATIONS}} \\ \text{Measurement} \quad \underbrace{\stackrel{1\text{st}}{\underline{\checkmark}} \quad \underbrace{\stackrel{2\text{nd}}{\underline{\checkmark}} \quad \underbrace{\stackrel{3\text{rd}}{\underline{\checkmark}} \quad \underbrace{\stackrel{4\text{th}}{\underline{\checkmark}}} \\ \end{array} \end{array}$

O ^{8=3%} Strain at Failure

_ IX	SULTANTS LTD				LO	G O	f Bof	REI	HO	LE	BH	5-2											1	OF 1
PR	OJECT: Nobleton Well 5 Upgrades																			REF.	NO.	: 23-	0358	
CL	ENT: ETO Engineering		Me	thod	Sol	id St	em /	Auge	r						ENCI	L NC).:							
PR	OJECT LOCATION: 12860 York Regional		Dia	mete	er: 1	50 m	m								ORIG	SINA	TED	BY NI	-					
DA	TUM: Geodetic	Dat	te: C	Oct-1	9-20	23	to O	ct-19	-202	23				СОМ	PILE	DB		5						
BH LOCATION: N 4861419.8 E 608183.3 Equipment SOIL PROFILE SAMPLES N Soil (m) DESCRIPTION IO <														5T T	rack	moui	ited F	ig		CHE		D BY	SI	J
			_	5		Head		bace	va			PLAS		TURAL STURE	LIQUIE		MT.	REM	ARKS					
(m)		LoT			S F	WATE	z		(ppm	i)			(p	ор pm)		W _P	CON	NTENT W	WL	ET PEN (kPa)	L UNIT /m ³)	GRAI	ND NSIZE
DEP		TAP	BER		3LOV		ATIC			>					-	•			• <u> </u>		Cu)	TURA (kn	DISTRII (°	BUTION 6)
260	7 Cround Surface	STRA	NUME	LYPE	z	GROU	ELEV	1	10 2	0 3	0 4	0	10	20	30	4 0	W	ATER C	ONTEN 20 :	т (%) 30	 	A	GR SA	SI CI
260		1.1/2	-	·	-			-										-						01 02
Ē	FILL: silty clay to clayey silt, some sand to sandy, trace gravel, trace	\otimes	1	SS	19							4	•				1							
Ē	rootlets, trace organics, brown, moist_stiff to very stiff	\bigotimes					260	-	-								_	-						
-		\bigotimes	2	SS	10								2						þ					
Ē		\otimes						ŧ\					\setminus											
E		\otimes			00		259	-	7				1											
- 258	5	\otimes		- 33	20			Ē.					T											
= 2	2 SILT: some sand to sandy, trace to	ĨĬĬ		88	40			Ĕ,	1									0						
Ē	dense		–				258		\geq						-	-								
3							-Bento	nite				~				20	5							
Ē			5	SS	70			F				00	1			20	•	o						
Ē						11	057	Ē																
4						11	257	-					_		_	_	-							
F			6	SS	59			F	₹				~					c						
- 256	.2 .5 SANDY SILT: trace clay, brown,									\backslash					\mathbf{i}	\checkmark								
-	wet, very dense		7	SS	73		256	-		Ť							1	0			1		0 27	69 4
Ē								Ē																
255	.1																/							
5	.6 SILT: some clay, some sand, trace gravel, brown, wet, very dense						255 Sand	-									1							
Ē			8	99	76	┋		-			1													
-			Ĕ		10		. W. L. :	Г 254.	3 m	1]			Ī					
-							Oct 25	5, 20 	23 	\uparrow						1								
Ē						日		È																
Ē								ŧ																
Ē,			9	SS	80]:目:	253	Ē		¥		_					-	-	0					
-						目		È																
Ē						「目		Ē																
Ē						Ľ.₿	252	-	+			_			+		-	-						
_9							.:	Ē																
È.			10	SS	76		-Bento	ı nite	×					•					ο					
<u>- 251</u> 9	.0 7 END OF BOREHOLE:		\vdash					F-	-			-	\rightarrow	+		\neg	+				-			
PJ 241-5	Notes:																							
8, 2023.G	unstabilized water measured at																							
ON 5 DEC	completion of drilling.																							
NOBLET	2) information well was installed upon completion of drilling,		1																					
2 23-0358	screened from 6.1m to 9.1m.		1																					
-2016-R00	Water Level Readings: Date W.L. Depth (m)		1																					
3GD(PPM)	Oct 25, 2023 6.42		1																					
PM) AND (1																					
ROPID(PI			1																					
ENVIE																								

 $\frac{\text{GRAPH}}{\text{NOTES}} + {}^3, \times {}^3: \begin{array}{c} \text{Numbers refer} \\ \text{to Sensitivity} \end{array}$

O ⁸=3% Strain at Failure

PROJECT: Nobleton Well 5 Upgrades REF. NO.: 23-0358 CLIENT: ETO Engineering Method: Solid Stem Auger ENCL NO .: ORIGINATED BY NL PROJECT LOCATION: 12860 York Regional Road 27, Nobleton Diameter: 150 mm CS DATUM: Geodetic Date: Oct-19-2023 to Oct-19-2023 COMPILED BY SD BH LOCATION: N 4861412.2 E 608192.4 Equipment: Drill Tech M5T Trackmounted Rig CHECKED BY SOIL PROFILE SAMPLES Soil Head Space Vapors PLASTIC NATURAL LIQUIE IMIT CONTENT LIMIT REMARKS GROUND WATER CONDITIONS PID CGD LIMIT POCKET PEN. (Cu) (kPa) AND NATURAL UNIT (kN/m³) (m) STRATA PLOT GRAIN SIZE (ppm) (ppm) BLOWS 0.3 m Wp w w ELEVATION ELEV DEPTH DISTRIBUTION ____ DESCRIPTION NUMBER >(%) WATER CONTENT (%) TYPE ż 10 20 30 40 10 20 30 40 10 20 30 GR SA SI CL 260.6 Ground Surface ASPHALT: 80 mm 268.9 280 FILL: sand and gravel, trace silt, 1 SS 9 0 brown, moist, loose 260 259.9 FILL: silty clay to clayey silt, some 0.7 80 sand to sandy, trace gravel, trace rootlets, trace organics, brown, 2 SS 7 0 x moist, firm to stiff 259 65 230 3 SS 8 258.4 2.2 SAND AND SILT: trace clay, trace 58 170 gravel, brown, moist, very dense 4 SS 74 1 55 39 5 258 64 200 5 SS 80 257 END OF BOREHOLE 3.5

LOG OF BOREHOLE BH5-3

1 OF 1

ENVISION

CONSULTANTS LTD

O ^{8=3%} Strain at Failure

CONSUL	TANTS LTD				LO	g of	F BOF	RE	HOI	E I	BH5-	4										1 OF	: 1
PROJ	ECT: Nobleton Well 5 Upgrades																		REF.	NO.	: 23-	0358	
CLIEN	NT: ETO Engineering							Me	thod:	Soli	d Sten	n Aug	ger						ENC	L NO).:		
PROJ	ECT LOCATION: 12860 York Regional	Road	d 27,	Noble	ton			Dia	amete	er: 15	i0 mm								ORIC	SINA'	TED	BY NL	
DATU								Da	te: C	oct-20)-2023	to	Oct-2	20-20 -	023				CON		D B		
BHLC	DCATION: N 4861454.7 E 608228.7				EQ		1	Eq	uipm	ent: L		ech	M5 I	Irac	ckmour		lig		CHE		DBA	30	
						Ш			3		leau v				<u>ר</u> ר	-PLAS	TIC NA	TURAL STURE		z	T WT	REMARKS	3
(m)		LOT			Sε	WAT	z		()	opm)		(ppn	ı)	W _P	CO	NTENT W	WL	ET PE (kPa)	V/m ³)	GRAIN SIZ	Έ
DEPTH	DESCRIPTION	ATA F	BER		BLO/ 0.3	UND	ATIC						*	>					IT (04)	POCK CUJ	ATURA (Kľ	DISTRIBUTI (%)	ON
260.4	Ground Surface	STR/	MUN	TΥΡΕ	ż	GRO CON	ELEV		10 2	0 30	40		10 2	20 3	0 40		10	20 ÷	30 30		Ž	GR SA SI	CL
268.9	TOPSOIL: 80 mm	×						Ē															
250 7	sand to sandy, trace gravel, trace	\bigotimes		55	8		260	È				T		-			0			1			
0.7	 rootlets, trace organics, brown, noist, firm to stiff 	X						-		\searrow					11	5							
1	FILL: silty sand, trace gravel, trace	\bigotimes	2	SS	10			-			\geq	×				•	0						
-	day, brown, moloc, looco to compact	\bigotimes					259	-							_					1			
258.5		X	3	SS	23			Ļ					\leftarrow	-			0						
<u>2</u> 1.8	some sand to sandy, trace gravel,						-Bento	l nite	\mathbb{N}														
-	brown, moist, very stiff to hard						258	F		\mathbf{n}					10)5			-				
-			4	SS	26			Ē			1					Î	0			250			
<u>-</u> 3	containing silty sand seams		<u> </u>					-															
Ē			5	SS	43		257	-					-			•	┝	++		250		3 17 60	20
-		H						-			\checkmark												
-		H	6	SS	41			-			6	4			19	00	0			250			
-		H	Ľ				-Sand	-				T				Ĭ-	-						
- 255.6		K	7	22	95			-							43	0				188			
<u>-</u> 4.8	SILT: trace clay, some sand to sandy, trace gravel, brown, moist.	ΠΠ	Ľ	00	- 35			Ē				Ī				Ĭ							
-	very dense						Scree	t n—			\parallel												
-						日		-															
- - 6								-															
-			8	SS	100		-Bento	l- nite			×				30	0	0					Split spoon sampler we	et
255.6	END OF BOREHOLE:	++++					-	-														campier ne	
	Notes: 1) Borehole was open and																						
	unstabilized water measured at 5.8m below ground surface upon																						
	completion of drilling. 2) Monitoring well was installed																						
	upon completion of drilling,																						
	Water Level Readings: Date W.L. Depth (m)																						
	Oct 25, 2023 Dry Dec 12, 2023 Dry																						
J 24-1-5																							
8, 2023.0																							
ON 5 DEC																							
NOBLETC																							
23-0358																							
2016-R02																							
200PPM)-								1															
1) AND CC																							
0 PID(PPA								1															
ENVIRE																							
GROUN	IDWATER ELEVATIONS					<u>GRAPH</u> NOTES	+ 3,	\times^3	. Nui to S	mbers Sensiti	refer ivitv	C	8= 3	^{3%} St	rain at F	ailure							

 $\begin{array}{c} 1 \text{ st} \\ \text{Measurement} \\ \underline{\nabla} \\ \underline{\nabla} \\ \underline{\Psi} \\ \underline{$

ENVISION

PROJECT: Nobleton Well 5 Upgrades REF. NO.: 23-0358 CLIENT: ETO Engineering Method: Hand Auger ENCL NO .: ORIGINATED BY KS PROJECT LOCATION: 12860 York Regional Road 27, Nobleton Diameter: 75 mm CS DATUM: Geodetic Date: Oct-19-2023 to Oct-19-2023 COMPILED BY SD BH LOCATION: N 4861453.4 E 608254.3 CHECKED BY SOIL PROFILE SAMPLES Soil Head Space Vapors PLASTIC NATURAL LIQUID MOISTURE LIQUID LIMIT CONTENT LIMIT REMARKS GROUND WATER CONDITIONS PID CGD POCKET PEN. (Cu) (kPa) AND NATURAL UNIT ((kN/m³) (m) STRATA PLOT GRAIN SIZE (ppm) (ppm) WP w BLOWS 0.3 m W ELEVATION ELEV DEPTH DISTRIBUTION -0 DESCRIPTION NUMBER \geq (%) WATER CONTENT (%) TYPE ż 10 20 30 40 10 20 30 40 10 20 30 GR SA SI CL 260.4 Ground Surface TOPSOIL: 115 mm 268.9 1 GS о FILL: silty sand to sandy silt, trace 260 to some clay, trace gravel, trace organics, brown, moist 2 GS 0 3 GS 0 259 258.9 1.5 END OF BOREHOLE

ENVISION

CONSULTANTS LTD

1 OF 1

CONS	ULTANTS LTD				LO	ig of	BOF	REHOLE	BH5-	6								1 OF	1
PR	OJECT: Nobleton Well 5 Upgrades													I	REF.	NO.	: 23-	0358	_
CLI	ENT: ETO Engineering							Method: Sc	lid Sten	n Auger				I	ENCL		.:		
PR	OJECT LOCATION: 12860 York Regiona	l Roa	d 27,	Noble	ton			Diameter: 1	50 mm					(ORIG	SINA	TED	BY NL	
DA	TUM: Geodetic							Date: Oct-	20-2023	to Oct-	20-2023				сом	PILE	D B	CS	
вн	LOCATION: N 4861412.1 E 608158.5							Equipment	Drill Te	ch M5T	Trackmo	unted F	Rig		CHE	CKEI	D BY	SD	
	SOIL PROFILE		5	SAMPL	.ES			Soil	Head S	Space V	apors	51.46		URAL			т	REMARKS	
(m) <u>ELE\</u> DEPT		LOT	ER		LOWS 0.3 m	ND WATER ITIONS	VTION	PII (ppr) n) 1	(CGD ppm) ≫€			STURE ITENT W O		OCKET PEN. (Cu) (kPa)	rural unit w (kn/m³)	AND GRAIN SIZE DISTRIBUTIC	<u>:</u> DN
		STRA	NMB	ΥPE	۵) - z	SROU	ELEV#	10 20	3 0 40	10	20 30 40	W	ATER C	ONTEN 20 3	T (%) 30	₽.	LAN		
260. - 260	2 Ground Surface	- the	2		-	00	ш	-				65						GR SA SI	
- 259.	FILL: silty clay to clayey silt, some sand to sandy, trace gravel, trace organics, trace rootlets, brown,			SS	12		200						0						
	SILTY CLAY TO CLAYEY SILT: some sand, trace gravel, brown, moist to wet hard		2	SS	37		259			•				0		250			
-			3	ss	46	-							o			250			
<u>258.</u> 2.	0 2 SILTY SAND TILL TO SANDY SILT TILL: some clay, trace gravel, blue manufacture clay, trace gravel,			SS	74	-	258						•						
<u>-</u> 257.	2 SILT: some sand to sandy, trace clay, trace gravel brown moist to						257					125—							
	wet, very dense		5	SS	78	-			*				0						
- <u>4</u> - - -			6	SS	75	-	256					65 •		>					
- - - 5			7	ss	81			F F			•		0					1 18 76	5
-						-	255					V							
253.	7		8	SS	85	_	254					55	0						
W-SOL4006-XMB15/202018 0 PDPPMI AND CODPMP2.210388 ADBLETON 5 DEC 8.2021.091 24-1-5																			
ENVIS																			
<u>GRO</u> Meas	UNDWATER ELEVATIONS urement $\sum_{n}^{1st} \sum_{n}^{2nd} \sum_{n}^{3rd} \nabla$					<u>NOTES</u>	+ ³ ,	X ³ : to Sens	sitivity	0 ⁶ =3	^{, ™} Strain at	Failure							
APPENDIX C:

Groundwater Level Monitoring

Table C - 1: Groundwater Level Monitoring at Well 2 Facility

	Monito	ring Well ID	BH2-1	BH2-2	BH2-3
Installed By			EnVision	EnVision	EnVision
Installation Date	ē		6-Dec-23	6-Dec-23	6-Dec-23
Well Status			Active	Active	Active
Well Inner Diame	ter	(mm)	50.8	50.8	50.8
Casing Type			Flushmount	Flushmount	Flushmount
Ground Surface Elev	vation	(masl)	265.58	265.95	264.57
			Silty Sand/ Silty	Silty Sand/ Silty Clay	Silty Sand/ Silty
Screened Soil Ur	nit		Clay Till	Till	Clay Till
			to Clayey Silt Till	to Clayey Silt Till	to Clayey Silt Till
		(mbgs)	2.10	3.10	2.10
TOP OF Well Scree	20	(masl)	263.48	262.85	262.47
Screen Length		(m)	3.05	3.05	3.05
Bottom of Screen		(mbgs)	5.20	6.10	5.20
		(masl)	260.38	259.85	259.37
	Depth of GW				
8-Dec-23	Depth of GW	(mbgs)	2.41	Dry	1.80
	GW Elevation	(masl)	263.17	Dry	262.77
	Depth of GW				
11-Sep-24	Deptitor GW	(mbgs)	2.56	3.22	1.90
	GW Elevation	(masl)	263.02	262.73	262.67
	Depth of GW				
13-Nov-24	bepar or on	(mbgs)	2.73	3.78	2.17
	GW Elevation	(masl)	262.85	262.17	262.40
	Depth of GW				
16-Dec-24		(mbgs)	-	-	-
	GW Elevation	(masl)	-	-	-
	Depth of GW				
28-Mar-25		(mbgs)	-	-	-
	GW Elevation	(masl)	-	-	-
22.11.25	Depth of GW				
22-May-25		(mbgs)	1.64	1.96	1.35
	GW Elevation	(masl)	263.94	263.99	263.22

Hydrogeological Impact Assessment Report Nobleton Wells 2 5 Upgrades, Region of York ETO Engineering Inc. EnVision Consultants Ltd. Project #: 23-0358 May 2025

	Monito	ring Well ID	BH5-1	BH5-2	BH5-4
Installed	Ву		EnVision	EnVision	EnVision
Installation	Date		19-Oct-23	19-Oct-23	5-Oct-23
Well Stat	us		Active	Active	Active
Well Inner Dia	ameter	(mm)	50.8	50.8	50.8
Casing Ty	rpe		Monument	Monument	Monument
Top of Pipe El	levation	(masl)	267.93	266.92	266.37
Ground Surface	Elevation	(masl)	261.20	260.74	260.35
Screened Sc	bil Unit		Silt	Silt	Silty Clay to Clayey Silt/ Silt
Top of Wall	Scroop	(mbgs)	6.10	6.10	4.57
	bereen	(masl)	255.11	254.64	255.78
Screen Ler	ngth	(m)	3.05	3.05	1.52
Bottom of S	creen	(mbgs)	9.14	9.14	6.10
Bottom of 5	ereen	(masl)	252.06	251.60	254.25
	Depth of GW	(mbtoc)	7.90	7.25	Dry
25-Oct-23	Deptitor GW	(mbgs)	6.94	6.42	Dry
	GW Elevation	(masl)	254.26	254.32	Dry
	Depth of GW	(mbtoc)	8.07	7.40	Dry
12-Dec-23	Deptholdw	(mbgs)	7.11	6.44	Dry
	GW Elevation	(masl)	254.09	254.30	Dry
	Depth of GW	(mbtoc)	6.94	6.23	6.49
16-Aug-24	Deptiror GW	(mbgs)	5.94	5.40	5.59
	GW Elevation	(masl)	255.26	255.34	254.76
	Depth of GW	(mbtoc)	7.21	6.44	6.64
11-Sep-24	Deptholow	(mbgs)	6.21	5.61	5.74
	GW Elevation	(masl)	254.99	255.13	254.61
	Depth of GW	(mbtoc)	7.73	7.01	6.92
13-Nov-24	Depth of GW	(mbgs)	6.73	6.18	6.02
	GW Elevation	(masl)	254.47	254.56	254.33
	Depth of GW	(mbtoc)	-	-	-
16-Dec-24	Deptholow	(mbgs)	-	-	-
	GW Elevation	(masl)	-	-	-
	Depth of GW	(mbtoc)	-	-	-
28-Mar-25	Deptholdw	(mbgs)	-	-	-
	GW Elevation	(masl)	-	-	-
	Depth of GW	(mbtoc)	6.68	5.89	6.44
22-May-25	Deptholdw	(mbgs)	5.68	5.06	5.54
	GW Elevation	(masl)	255.52	255.68	254.81

Table C - 2: Groundwater Level Monitoring at Well 5 Facility

APPENDIX D: Grain Size Analysis

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	4.68E-07	4.68E-09	4.04E-04	
Hazen K (cm/s) = d_{10} (mm)	8.09E-07	8.09E-09	6.99E-04	
Slichter	9.24E-08	9.24E-10	7.98E-05	
Terzaghi	1.33E-07	1.33E-09	1.15E-04	
Beyer	5.37E-07	5.37E-09	4.64E-04	
Sauerbrei	3.88E-07	3.88E-09	3.35E-04	
Kruger	2.51E-05	2.51E-07	2.17E-02	
Kozeny-Carmen	7.04E-06	7.04E-08	6.09E-03	
Zunker	5.33E-06	5.33E-08	4.60E-03	
Zamarin	6.30E-06	6.30E-08	5.44E-03	
USBR	4.64E-07	4.64E-09	4.01E-04	
Barr	9.94E-08	9.94E-10	8.59E-05	
Alyamani and Sen	6.98E-06	6.98E-08	6.03E-03	
Chapuis	1.75E-09	1.75E-11	1.51E-06	
Krumbein and Monk	2.81E-05	2.81E-07	2.43E-02	
geometric mean	6.46E-07	6.46E-09	5.58E-04	
arithmetic mean	2.49E-06	2.49E-08	2.15E-03	

	K from Grain Size Analysis Re	port		Date: 2024-09-24	
ENVISION	Sample Name:	BH2-2	SS2	Depth - 0.6m	
	Mass Sample (g):	100		T (oC)	20

Poorly sorted clay with fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	2.69E-07	2.69E-09	2.33E-04	
Hazen K (cm/s) = d_{10} (mm)	4.49E-07	4.49E-09	3.88E-04	
Slichter	5.36E-08	5.36E-10	4.63E-05	
Terzaghi	7.81E-08	7.81E-10	6.75E-05	
Beyer	3.22E-07	3.22E-09	2.78E-04	
Sauerbrei	1.65E-07	1.65E-09	1.42E-04	
Kruger	1.66E-05	1.66E-07	1.43E-02	
Kozeny-Carmen	4.48E-06	4.48E-08	3.87E-03	
Zunker	3.34E-06	3.34E-08	2.89E-03	
Zamarin	3.96E-06	3.96E-08	3.43E-03	
USBR	1.23E-07	1.23E-09	1.06E-04	
Barr	5.80E-08	5.80E-10	5.01E-05	
Alyamani and Sen	1.54E-06	1.54E-08	1.33E-03	
Chapuis	8.51E-10	8.51E-12	7.35E-07	
Krumbein and Monk	2.24E-05	2.24E-07	1.93E-02	
geometric mean	2.45E-07	2.45E-09	2.12E-04	
arithmetic mean	5.89E-07	5.89E-09	5.09E-04	

Poorly sorted sandy silt with fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	3.74E-07	3.74E-09	3.23E-04	
Hazen K (cm/s) = d_{10} (mm)	6.60E-07	6.60E-09	5.70E-04	
Slichter	7.34E-08	7.34E-10	6.35E-05	
Terzaghi	1.05E-07	1.05E-09	9.05E-05	
Beyer	3.34E-07	3.34E-09	2.88E-04	
Sauerbrei	2.59E-07	2.59E-09	2.24E-04	
Kruger	3.97E-05	3.97E-07	3.43E-02	
Kozeny-Carmen	7.78E-06	7.78E-08	6.72E-03	
Zunker	5.90E-06	5.90E-08	5.10E-03	
Zamarin	6.93E-06	6.93E-08	5.99E-03	
USBR	3.80E-07	3.80E-09	3.29E-04	
Barr	7.87E-08	7.87E-10	6.80E-05	
Alyamani and Sen	3.09E-05	3.09E-07	2.67E-02	
Chapuis	1.23E-09	1.23E-11	1.07E-06	
Krumbein and Monk	3.59E-05	3.59E-07	3.10E-02	
geometric mean	8.57E-07	8.57E-09	7.41E-04	
arithmetic mean	1.04E-05	1.04E-07	8.98E-03	

Table D-1

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	1.49E-07	1.49E-09	1.28E-04	
Hazen K (cm/s) = d_{10} (mm)	2.61E-07	2.61E-09	2.26E-04	
Slichter	2.92E-08	2.92E-10	2.53E-05	
Terzaghi	4.18E-08	4.18E-10	3.61E-05	
Beyer	1.57E-07	1.57E-09	1.36E-04	
Sauerbrei	8.91E-08	8.91E-10	7.70E-05	
Kruger	2.53E-05	2.53E-07	2.18E-02	
Kozeny-Carmen	3.93E-06	3.93E-08	3.40E-03	
Zunker	2.97E-06	2.97E-08	2.57E-03	
Zamarin	3.49E-06	3.49E-08	3.01E-03	
USBR	6.32E-08	6.32E-10	5.46E-05	
Barr	3.14E-08	3.14E-10	2.71E-05	
Alyamani and Sen	2.87E-06	2.87E-08	2.48E-03	
Chapuis	3.39E-10	3.39E-12	2.93E-07	
Krumbein and Monk	2.87E-05	2.87E-07	2.48E-02	
geometric mean	2.00E-07	2.00E-09	1.73E-04	
arithmetic mean	9.98E-07	9.98E-09	8.62E-04	

Poorly sorted silt low in fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	1.22E-05	1.22E-07	1.05E-02	
Hazen K (cm/s) = d_{10} (mm)	1.35E-05	1.35E-07	1.17E-02	
Slichter	2.89E-06	2.89E-08	2.50E-03	
Terzaghi	4.74E-06	4.74E-08	4.09E-03	
Beyer	1.25E-05	1.25E-07	1.08E-02	
Sauerbrei	1.21E-05	1.21E-07	1.04E-02	
Kruger	7.38E-05	7.38E-07	6.38E-02	
Kozeny-Carmen	4.54E-05	4.54E-07	3.92E-02	
Zunker	2.82E-05	2.82E-07	2.44E-02	
Zamarin	3.32E-05	3.32E-07	2.87E-02	
USBR	7.78E-06	7.78E-08	6.72E-03	
Barr	3.42E-06	3.42E-08	2.96E-03	
Alyamani and Sen	9.67E-07	9.67E-09	8.35E-04	
Chapuis	3.69E-07	3.69E-09	3.19E-04	
Krumbein and Monk	7.60E-05	7.60E-07	6.57E-02	
geometric mean	3.42E-06	3.42E-08	2.95E-03	
arithmetic mean	5.48E-06	5.48E-08	4.74E-03	

Poorly sorted sandy silt low in fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	7.41E-05	7.41E-07	6.40E-02	
Hazen K (cm/s) = d_{10} (mm)	7.47E-05	7.47E-07	6.45E-02	
Slichter	1.87E-05	1.87E-07	1.62E-02	
Terzaghi	3.13E-05	3.13E-07	2.70E-02	
Beyer	7.19E-05	7.19E-07	6.21E-02	
Sauerbrei	7.66E-05	7.66E-07	6.62E-02	
Kruger	2.13E-04	2.13E-06	1.84E-01	
Kozeny-Carmen	1.49E-04	1.49E-06	1.28E-01	
Zunker	8.81E-05	8.81E-07	7.61E-02	
Zamarin	1.03E-04	1.03E-06	8.87E-02	
USBR	5.06E-05	5.06E-07	4.37E-02	
Barr	2.29E-05	2.29E-07	1.97E-02	
Alyamani and Sen	3.55E-09	3.55E-11	3.06E-06	
Chapuis	5.03E-06	5.03E-08	4.35E-03	
Krumbein and Monk	2.17E-04	2.17E-06	1.88E-01	
geometric mean	1.84E-06	1.84E-08	1.59E-03	
arithmetic mean	3.31E-05	3.31E-07	2.86E-02	

Table D-4

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	3.67E-05	3.67E-07	3.17E-02	
Hazen K (cm/s) = d_{10} (mm)	5.66E-05	5.66E-07	4.89E-02	
Slichter	7.49E-06	7.49E-08	6.47E-03	
Terzaghi	1.12E-05	1.12E-07	9.68E-03	
Beyer	4.40E-05	4.40E-07	3.80E-02	
Sauerbrei	5.15E-05	5.15E-07	4.45E-02	
Kruger	1.93E-04	1.93E-06	1.67E-01	
Kozeny-Carmen	8.17E-05	8.17E-07	7.06E-02	
Zunker	5.93E-05	5.93E-07	5.12E-02	
Zamarin	7.05E-05	7.05E-07	6.09E-02	
USBR	1.01E-04	1.01E-06	8.72E-02	
Barr	8.21E-06	8.21E-08	7.09E-03	
Alyamani and Sen	1.92E-04	1.92E-06	1.66E-01	
Chapuis	8.89E-07	8.89E-09	7.68E-04	
Krumbein and Monk	3.71E-04	3.71E-06	3.21E-01	
geometric mean	7.41E-05	7.41E-07	6.40E-02	
arithmetic mean	1.56E-04	1.56E-06	1.35E-01	

Poorly sorted clay with fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	3.77E-07	3.77E-09	3.25E-04	
Hazen K (cm/s) = d_{10} (mm)	6.56E-07	6.56E-09	5.66E-04	
Slichter	7.43E-08	7.43E-10	6.42E-05	
Terzaghi	1.06E-07	1.06E-09	9.20E-05	
Beyer	4.24E-07	4.24E-09	3.66E-04	
Sauerbrei	2.53E-07	2.53E-09	2.19E-04	
Kruger	2.27E-05	2.27E-07	1.96E-02	
Kozeny-Carmen	6.07E-06	6.07E-08	5.24E-03	
Zunker	4.61E-06	4.61E-08	3.98E-03	
Zamarin	5.45E-06	5.45E-08	4.71E-03	
USBR	3.00E-07	3.00E-09	2.59E-04	
Barr	7.98E-08	7.98E-10	6.89E-05	
Alyamani and Sen	5.10E-06	5.10E-08	4.41E-03	
Chapuis	1.27E-09	1.27E-11	1.10E-06	
Krumbein and Monk	2.35E-05	2.35E-07	2.03E-02	
geometric mean	4.69E-07	4.69E-09	4.05E-04	
arithmetic mean	1.81E-06	1.81E-08	1.57E-03	

APPENDIX E: In-Situ Single Well Response Tests

Well Details						
Top of Screen	2.1	m				
Bottom of Screen	5.1	m				
Diam. of well	51	mm				
Static Water Level	2.56	m bgs				
Formation Screened	Silty sand to silty clay till					

Well Details						
Top of Screen	3.0	m				
Bottom of Screen	6.0	m				
Diam. of well	51	mm				
Static Water Level	3.22	m bgs				
Formation Screened	l Silty sand to silty clay till					

11-Sep-24

Date of Analysis:

Well Details						
Top of Screen	2.2	m				
Bottom of Screen	5.2	m				
Diam. of well	51	mm				
Static Water Level	1.9	m bgs				
Formation Screened	Silty sand to	silty clay till				

Well Details						
Top of Screen	6.1	m				
Bottom of Screen	9.1	m				
Diam. of well	51	mm				
Static Water Level	6.94	m bgs				
Formation Screened	l Silt					

Well Details						
Top of Screen	6.1	m				
Bottom of Screen	9.1	m				
Diam. of well	51	mm				
Static Water Level	6.42	m bgs				
Formation Screened	Silt					

APPENDIX F: Laboratory Certificate of Analysis

Your Project #: 23-0358 Your C.O.C. #: C#1011742-01-01

Attention: Rob Byers

EnVision Consultants Ltd. 40-6415 Northwest Drive Mississauga, ON CANADA L4V 1X1

> Report Date: 2024/09/24 Report #: R8333589 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4S5121 Received: 2024/09/12, 09:03

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
ABN Compounds in Water by GC/MS	1	2024/09/15	2024/09/16	CAM SOP-00301	EPA 8270 m
Carbonaceous BOD	1	2024/09/14	2024/09/19	CAM SOP-00427	SM 24 5210B m
Total Cyanide	1	2024/09/14	2024/09/14	CAM SOP-00457	OMOE E3015 5 m
Fluoride	1	2024/09/13	2024/09/13	CAM SOP-00449	SM 24 4500-F C m
Mercury in Water by CVAA	1	2024/09/17	2024/09/17	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	1	2024/09/18	2024/09/19	CAM SOP-00447	EPA 6020B m
Total Nonylphenol in Liquids by HPLC	1	2024/09/16	2024/09/16	CAM SOP-00313	In-house Method
Nonylphenol Ethoxylates in Liquids: HPLC	1	2024/09/16	2024/09/16	CAM SOP-00313	Bureau Veritas
Animal and Vegetable Oil and Grease	1	N/A	2024/09/16	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2024/09/16	2024/09/16	CAM SOP-00326	EPA1664B m,SM5520B m
Polychlorinated Biphenyl in Water	1	2024/09/17	2024/09/18	CAM SOP-00309	EPA 8082A m
Phenols (4AAP)	1	N/A	2024/09/17	CAM SOP-00444	OMOE E3179 m
рН	1	2024/09/13	2024/09/13	CAM SOP-00413	SM 24th-4500H+ B
Sulphate by Automated Turbidimetry	1	N/A	2024/09/16	CAM SOP-00464	SM 24 4500-SO42- E m
Total Kjeldahl Nitrogen in Water	1	2024/09/16	2024/09/17	CAM SOP-00938	OMOE E3516 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2024/09/16	2024/09/16	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	1	2024/09/14	2024/09/16	CAM SOP-00428	SM 24 2540D m
Volatile Organic Compounds in Water	1	N/A	2024/09/15	CAM SOP-00228	EPA 8260D

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless

Page 1 of 13

Your Project #: 23-0358 Your C.O.C. #: C#1011742-01-01

Attention: Rob Byers

EnVision Consultants Ltd. 40-6415 Northwest Drive Mississauga, ON CANADA L4V 1X1

> Report Date: 2024/09/24 Report #: R8333589 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4S5121

Received: 2024/09/12, 09:03

otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Ashton Gibson, Project Manager Email: ashton.gibson@bureauveritas.com Phone# (905)817-5765

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 13

YORK SANITARY & STORM SEWER (2021-102)

Bureau Veritas ID				ACQA44			ACQA44		
Sampling Date				2024/09/11			2024/09/11		
				16:00			16:00		
COC Number				C#1011742-01-01			C#1011742-01-01		
	UNITS	Criteria	Criteria-2	BH2-1	RDL	QC Batch	BH2-1 Lab-Dup	RDL	QC Batch
Calculated Parameters									
Total Animal/Vegetable Oil and Gr	ease mg/L	150	-	<0.50	0.50	9634147			
Inorganics									
Total Carbonaceous BOD	mg/L	300	15	<2	2	9638698			
Fluoride (F-)	mg/L	10	-	0.11	0.10	9636669	<0.10	0.10	9636669
Total Kjeldahl Nitrogen (TKN)	mg/L	100	1	<0.50 (1)	0.50	9641791			
рН	pН	6.0:10.5	6.0:9.0	7.20		9636666	7.23		9636666
Phenols-4AAP	mg/L	1	0.008	<0.0010	0.0010	9642646			
Total Suspended Solids	mg/L	350	15	95	10	9635079			
Dissolved Sulphate (SO4)	mg/L	1500	-	74	1.0	9637560			
Total Cyanide (CN)	mg/L	2	0.020	<0.0050	0.0050	9638998			
Petroleum Hydrocarbons									
Total Oil & Grease	mg/L	-	-	<0.50	0.50	9639829			
Total Oil & Grease Mineral/Synthe	tic mg/L	15	-	<0.50	0.50	9639830			
Miscellaneous Parameters									
Nonylphenol Ethoxylate (Total)	mg/L	0.2	-	<0.025	0.025	9639842			
Nonylphenol (Total)	mg/L	0.02	-	<0.001	0.001	9639836			
Metals									
Mercury (Hg)	mg/L	0.01	0.0004	<0.00010	0.00010	9643298			
Total Aluminum (Al)	ug/L	50000	-	880	4.9	9645450			
Total Antimony (Sb)	ug/L	5000	-	<0.50	0.50	9645450			
Total Arsenic (As)	ug/L	1000	20	<1.0	1.0	9645450			
Total Cadmium (Cd)	ug/L	700	8	<0.090	0.090	9645450			
Total Chromium (Cr)	ug/L	2000	80	<5.0	5.0	9645450			
Total Cobalt (Co)	ug/L	5000	-	1.1	0.50	9645450			
Total Copper (Cu)	ug/L	3000	50	1.9	0.90	9645450			
Total Lead (Pb)	ug/L	1000	120	1.0	0.50	9645450			
Total Manganese (Mn)	ug/L	5000	150	69	2.0	9645450			
Total Molybdenum (Mo)	ug/L	5000	-	<0.50	0.50	9645450			
No Fill No Exce	edance								
Grey Exceeds	1 criteria poli	cy/level							

Exceeds both criteria/levels

RDL = Reportable Detection Limit

Black

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Regional Municipality of York By-Law No 2021-102, Limits for Sanitary Sewer Discharge

Criteria-2: Regional Municipality of York By-Law No 2021-102, Limits for Storm Sewer/Land Drainage Discharge

(1) Due to a high concentration of NOx, the sample required dilution. The detection limit was adjusted accordingly.

Page 3 of 13

YORK SANITARY & STORM SEWER (2021-102)

Bureau Veritas ID					ACQA44 ACQA44					
Sampling Date					2024/09/11			2024/09/11		
Sampling Date				ļ	16:00	ļ		16:00		ļ
COC Number				ļ	C#1011742-01-01	ļ		C#1011742-01-01		ļ
		UNITS	Criteria	Criteria-2	BH2-1	RDL	QC Batch	BH2-1 Lab-Dup	RDL	QC Batch
Total Nickel (Ni)		ug/L	2000	80	3.6	1.0	9645450			
Total Phosphorus (P)		ug/L	10000	400	<100	100	9645450			
Total Selenium (Se)		ug/L	1000	20	<2.0	2.0	9645450			
Total Silver (Ag)		ug/L	5000	120	<0.090	0.090	9645450			
Total Tin (Sn)		ug/L	5000	-	1.4	1.0	9645450			
Total Titanium (Ti)		ug/L	5000	-	20	5.0	9645450			
Total Zinc (Zn)		ug/L	2000	40	5.5	5.0	9645450			
Semivolatile Organics										
Bis(2-ethylhexyl)phthalat	.e	ug/L	12	8.8	<8.0	8.0	9639590			
Di-N-butyl phthalate		ug/L	80	15.0	<8.0	8.0	9639590			
Volatile Organics										
Benzene		ug/L	10	2.0	<0.20	0.20	9638758	<0.20	0.20	9638758
Chloroform		ug/L	40	2.0	<0.20	0.20	9638758	<0.20	0.20	9638758
1,2-Dichlorobenzene		ug/L	50	5.6	<0.40	0.40	9638758	<0.40	0.40	9638758
1,4-Dichlorobenzene		ug/L	80	6.8	<0.40	0.40	9638758	<0.40	0.40	9638758
cis-1,2-Dichloroethylene		ug/L	4000	5.6	<0.50	0.50	9638758	<0.50	0.50	9638758
trans-1,3-Dichloropropen	ie	ug/L	140	5.6	<0.40	0.40	9638758	<0.40	0.40	9638758
Ethylbenzene		ug/L	160	2.0	<0.20	0.20	9638758	<0.20	0.20	9638758
Methylene Chloride(Dich	loromethane)	ug/L	2000	5.2	<2.0	2.0	9638758	<2.0	2.0	9638758
Methyl Ethyl Ketone (2-B	utanone)	ug/L	8000	-	<10	10	9638758	<10	10	9638758
Styrene		ug/L	200	-	<0.40	0.40	9638758	<0.40	0.40	9638758
1,1,2,2-Tetrachloroethan	e	ug/L	1400	17.0	<0.40	0.40	9638758	<0.40	0.40	9638758
Tetrachloroethylene		ug/L	1000	4.4	<0.20	0.20	9638758	<0.20	0.20	9638758
Toluene		ug/L	270	2.0	<0.20	0.20	9638758	<0.20	0.20	9638758
Trichloroethylene		ug/L	400	8.0	<0.20	0.20	9638758	<0.20	0.20	9638758
p+m-Xylene		ug/L	-	-	<0.20	0.20	9638758	<0.20	0.20	9638758
o-Xylene		ug/L	-	-	<0.20	0.20	9638758	<0.20	0.20	9638758
Total Xylenes		ug/L	1400	4.4	<0.20	0.20	9638758	<0.20	0.20	9638758
PCBs		. 								
Total PCB		ug/L	1	0.4	<0.05	0.05	9642291			
No Fill	No Exceedance	e								
Grey	rey Exceeds 1 criteria policy/level									
Black	Exceeds both (criteria/l	evels							
RDL = Reportable Detecti	on Limit									
QC Batch = Quality Contro	ol Batch									
Lab-Dup = Laboratory Init	tiated Duplicate	÷								
Criteria: Regional Municip	pality of York By	/-Law Nc	2021-10	2, Limits fo	or Sanitary Sewer Dis	scharge				
Criteria-2: Regional Municipality of York By-Law No 2021-102, Limits for Storm Sewer/Land Drainage Discharge										

Page 4 of 13

YORK SANITARY & STORM SEWER (2021-102)

Bureau Veritas ID					ACQA44			ACQA44		
Sampling Date					2024/09/11 16:00			2024/09/11 16:00		
COC Number					C#1011742-01-01			C#1011742-01-01		
	L	UNITS	Criteria	Criteria-2	BH2-1	RDL	QC Batch	BH2-1 Lab-Dup	RDL	QC Batch
Surrogate Recovery (%))						<u>.</u>			
2,4,6-Tribromophenol		%	-	-	71		9639590			
2-Fluorobiphenyl		%	-	-	50		9639590			
2-Fluorophenol		%	-	-	35		9639590			
D14-Terphenyl		%	-		104		9639590			
D5-Nitrobenzene		%	-		80		9639590			
D5-Phenol		%	-	-	29		9639590			
Decachlorobiphenyl		%	-		81		9642291			
4-Bromofluorobenzene		%	-	-	100		9638758	102		9638758
D4-1,2-Dichloroethane		%	-	-	97		9638758	86		9638758
D8-Toluene		%	-	-	103		9638758	90		9638758
No Fill	No Exceedance									
Grey	Exceeds 1 criteria policy/level									
Black	Exceeds both criteria/levels									
RDL = Reportable Detec	ction Limit									

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Regional Municipality of York By-Law No 2021-102, Limits for Sanitary Sewer Discharge

Criteria-2: Regional Municipality of York By-Law No 2021-102, Limits for Storm Sewer/Land Drainage Discharge

Fluoride

Mercury in Water by CVAA

Total Metals Analysis by ICPMS

Total Nonylphenol in Liquids by HPLC

EnVision Consultants Ltd. Client Project #: 23-0358 Sampler Initials: SH

2024/09/13

2024/09/17

2024/09/19

2024/09/16

TEST SUMMARY

Bureau Veritas ID: Sample ID: Matrix:	ACQA44 BH2-1 Water					Collected: 2024/09/11 Shipped: Received: 2024/09/12
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
ABN Compounds in Wate	r by GC/MS	GC/MS	9639590	2024/09/15	2024/09/16	Ahmed Ismail
Carbonaceous BOD		DO	9638698	2024/09/14	2024/09/19	Amrutha Anilkumar
Total Cyanide		SKAL/CN	9638998	2024/09/14	2024/09/14	Prgya Panchal

9636669

9643298

9645450

9639836

2024/09/13

2024/09/17

2024/09/18

2024/09/16

ISE

CV/AA

ICP/MS

LC/FLU

Total Nonyiphenol in Liquids by HPLC	LC/FLU	9039830	2024/09/16	2024/09/16	Dennis Boourani
Nonylphenol Ethoxylates in Liquids: HPLC	LC/FLU	9639842	2024/09/16	2024/09/16	Dennis Boodram
Animal and Vegetable Oil and Grease	BAL	9634147	N/A	2024/09/16	Automated Statchk
Total Oil and Grease	BAL	9639829	2024/09/16	2024/09/16	Navneet Singh
Polychlorinated Biphenyl in Water	GC/ECD	9642291	2024/09/17	2024/09/18	Debashis Saha
Phenols (4AAP)	TECH/PHEN	9642646	N/A	2024/09/17	Sachi Patel
рН	AT	9636666	2024/09/13	2024/09/13	Nachiketa Gohil
Sulphate by Automated Turbidimetry	SKAL	9637560	N/A	2024/09/16	Massarat Jan
Total Kjeldahl Nitrogen in Water	SKAL	9641791	2024/09/16	2024/09/17	Rajni Tyagi
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	9639830	2024/09/16	2024/09/16	Navneet Singh
Total Suspended Solids	BAL	9635079	2024/09/14	2024/09/16	Razieh Tabesh
Volatile Organic Compounds in Water	GC/MS	9638758	N/A	2024/09/15	Narayan Ghimire

Bureau Veritas ID:	ACQA44 Dup
Sample ID:	BH2-1
Matrix:	Water

Collected:	2024/09/11
Shipped:	
Received:	2024/09/12

Nachiketa Gohil

Prempal Bhatti

Dennis Boodram

Maitri PATIL

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Fluoride	ISE	9636669	2024/09/13	2024/09/13	Nachiketa Gohil
рН	AT	9636666	2024/09/13	2024/09/13	Nachiketa Gohil
Volatile Organic Compounds in Water	GC/MS	9638758	N/A	2024/09/15	Narayan Ghimire

Page 6 of 13

GENERAL COMMENTS

Sample ACQA44 [BH2-1] : ABN Analysis: Due to the sample matrix, a smaller amount was used for extraction. Detection limits were adjusted accordingly.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

EnVision Consultants Ltd. Client Project #: 23-0358 Sampler Initials: SH

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	indard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9638758	4-Bromofluorobenzene	2024/09/15	105	70 - 130	101	70 - 130	103	%				
9638758	D4-1,2-Dichloroethane	2024/09/15	102	70 - 130	92	70 - 130	92	%				
9638758	D8-Toluene	2024/09/15	97	70 - 130	97	70 - 130	103	%				
9639590	2,4,6-Tribromophenol	2024/09/15	96	10 - 130	84	10 - 130	85	%				
9639590	2-Fluorobiphenyl	2024/09/15	69	30 - 130	61	30 - 130	67	%				
9639590	2-Fluorophenol	2024/09/15	48	10 - 130	47	10 - 130	43	%				
9639590	D14-Terphenyl	2024/09/15	94	30 - 130	99	30 - 130	99	%				
9639590	D5-Nitrobenzene	2024/09/15	86	30 - 130	79	30 - 130	82	%				
9639590	D5-Phenol	2024/09/15	34	10 - 130	29	10 - 130	29	%				
9642291	Decachlorobiphenyl	2024/09/18	81	60 - 130	80	60 - 130	75	%				
9635079	Total Suspended Solids	2024/09/16			95	80 - 120	<10	mg/L	8.3	20		
9636666	рН	2024/09/13			102	98 - 103			0.37	N/A		
9636669	Fluoride (F-)	2024/09/13	100	80 - 120	102	80 - 120	<0.10	mg/L	9.1	20		
9637560	Dissolved Sulphate (SO4)	2024/09/16	NC	75 - 125	98	80 - 120	<1.0	mg/L	1.0	20		
9638698	Total Carbonaceous BOD	2024/09/19					<2	mg/L	1.8	30	99	80 - 120
9638758	1,1,2,2-Tetrachloroethane	2024/09/15	102	70 - 130	91	70 - 130	<0.40	ug/L	NC	30		
9638758	1,2-Dichlorobenzene	2024/09/15	106	70 - 130	89	70 - 130	<0.40	ug/L	NC	30		
9638758	1,4-Dichlorobenzene	2024/09/15	105	70 - 130	100	70 - 130	<0.40	ug/L	NC	30		
9638758	Benzene	2024/09/15	111	70 - 130	94	70 - 130	<0.20	ug/L	NC	30		
9638758	Chloroform	2024/09/15	110	70 - 130	89	70 - 130	<0.20	ug/L	NC	30		
9638758	cis-1,2-Dichloroethylene	2024/09/15	117	70 - 130	94	70 - 130	<0.50	ug/L	NC	30		
9638758	Ethylbenzene	2024/09/15	101	70 - 130	92	70 - 130	<0.20	ug/L	NC	30		
9638758	Methyl Ethyl Ketone (2-Butanone)	2024/09/15	120	60 - 140	107	60 - 140	<10	ug/L	NC	30		
9638758	Methylene Chloride(Dichloromethane)	2024/09/15	97	70 - 130	89	70 - 130	<2.0	ug/L	NC	30		
9638758	o-Xylene	2024/09/15	111	70 - 130	95	70 - 130	<0.20	ug/L	NC	30		
9638758	p+m-Xylene	2024/09/15	104	70 - 130	94	70 - 130	<0.20	ug/L	NC	30		
9638758	Styrene	2024/09/15	108	70 - 130	96	70 - 130	<0.40	ug/L	NC	30		
9638758	Tetrachloroethylene	2024/09/15	101	70 - 130	90	70 - 130	<0.20	ug/L	NC	30		
9638758	Toluene	2024/09/15	103	70 - 130	90	70 - 130	<0.20	ug/L	NC	30		
9638758	Total Xylenes	2024/09/15					<0.20	ug/L	NC	30		
9638758	trans-1,3-Dichloropropene	2024/09/15	123	70 - 130	87	70 - 130	<0.40	ug/L	NC	30		

Page 8 of 13

QUALITY ASSURANCE REPORT(CONT'D)

EnVision Consultants Ltd. Client Project #: 23-0358 Sampler Initials: SH

			Matrix	Spike	SPIKED	BLANK	Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9638758	Trichloroethylene	2024/09/15	101	70 - 130	94	70 - 130	<0.20	ug/L	NC	30		
9638998	Total Cyanide (CN)	2024/09/14	97	80 - 120	100	80 - 120	<0.0050	mg/L	NC	20		
9639590	Bis(2-ethylhexyl)phthalate	2024/09/15	95	30 - 130	98	30 - 130	<2.0	ug/L	NC	40		
9639590	Di-N-butyl phthalate	2024/09/15	102	30 - 130	106	30 - 130	<2.0	ug/L	NC	40		
9639829	Total Oil & Grease	2024/09/16			99	80 - 110	<0.50	mg/L	0.25	25		
9639830	Total Oil & Grease Mineral/Synthetic	2024/09/16			97	65 - 130	<0.50	mg/L	0.52	25		
9639836	Nonylphenol (Total)	2024/09/16	81	50 - 130	97	50 - 130	<0.001	mg/L	NC	40		
9639842	Nonylphenol Ethoxylate (Total)	2024/09/16	89	50 - 130	96	50 - 130	<0.025	mg/L	NC	40		
9641791	Total Kjeldahl Nitrogen (TKN)	2024/09/17	100	80 - 120	100	80 - 120	<0.10	mg/L	NC	20	102	80 - 120
9642291	Total PCB	2024/09/18	94	60 - 130	84	60 - 130	<0.05	ug/L	NC	40		
9642646	Phenols-4AAP	2024/09/17	102	80 - 120	104	80 - 120	<0.0010	mg/L	13	20		
9643298	Mercury (Hg)	2024/09/17	97	75 - 125	98	80 - 120	<0.00010	mg/L	NC	20		
9645450	Total Aluminum (Al)	2024/09/19	99	80 - 120	99	80 - 120	<4.9	ug/L	1.4	20		
9645450	Total Antimony (Sb)	2024/09/19	106	80 - 120	103	80 - 120	<0.50	ug/L	14	20		
9645450	Total Arsenic (As)	2024/09/19	101	80 - 120	98	80 - 120	<1.0	ug/L	2.5	20		
9645450	Total Cadmium (Cd)	2024/09/19	99	80 - 120	97	80 - 120	<0.090	ug/L	NC	20		
9645450	Total Chromium (Cr)	2024/09/19	100	80 - 120	97	80 - 120	<5.0	ug/L	NC	20		
9645450	Total Cobalt (Co)	2024/09/19	98	80 - 120	97	80 - 120	<0.50	ug/L	NC	20		
9645450	Total Copper (Cu)	2024/09/19	103	80 - 120	98	80 - 120	<0.90	ug/L	NC	20		
9645450	Total Lead (Pb)	2024/09/19	96	80 - 120	95	80 - 120	<0.50	ug/L	NC	20		
9645450	Total Manganese (Mn)	2024/09/19	97	80 - 120	94	80 - 120	<2.0	ug/L	4.7	20		
9645450	Total Molybdenum (Mo)	2024/09/19	103	80 - 120	99	80 - 120	<0.50	ug/L	10	20		
9645450	Total Nickel (Ni)	2024/09/19	97	80 - 120	95	80 - 120	<1.0	ug/L	6.9	20		
9645450	Total Phosphorus (P)	2024/09/19	NC	80 - 120	93	80 - 120	<100	ug/L	2.6	20		
9645450	Total Selenium (Se)	2024/09/19	103	80 - 120	102	80 - 120	<2.0	ug/L	NC	20		
9645450	Total Silver (Ag)	2024/09/19	99	80 - 120	97	80 - 120	<0.090	ug/L	NC	20		
9645450	Total Tin (Sn)	2024/09/19	102	80 - 120	98	80 - 120	<1.0	ug/L	NC	20		
9645450	Total Titanium (Ti)	2024/09/19	95	80 - 120	96	80 - 120	<5.0	ug/L	5.2	20		

QUALITY ASSURANCE REPORT(CONT'D)

EnVision Consultants Ltd. Client Project #: 23-0358 Sampler Initials: SH

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9645450	Total Zinc (Zn)	2024/09/19	100	80 - 120	100	80 - 120	<5.0	ug/L	9.1	20		
N/A = Not A	N/A = Not Applicable											
Duplicate: P	Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.											
Matrix Spike	Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.											
QC Standard	QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.											
Spiked Blank	k: A blank matrix sample to which a known amou	nt of the analyte	e, usually from	n a second so	ource, has bee	n added. Use	ed to evaluate	method a	ccuracy.			
Method Blar	nk: A blank matrix containing all reagents used in	the analytical p	procedure. Use	ed to identif	y laboratory c	ontaminatior	ι.					
Surrogate: A	A pure or isotopically labeled compound whose b	ehavior mirrors	the analytes of	of interest. L	Jsed to evalua	te extraction	efficiency.					
NC (Matrix S recovery cal	NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)											
NC (Duplicat	te RPD): The duplicate RPD was not calculated. Th	e concentration	n in the sample	e and/or du	plicate was to	o low to pern	nit a reliable R	PD calcula	ition (absolute	difference <	<= 2x RDL).	

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Louis A Harding

Louise Harding, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

C4S512	1																		-	
2024/0	9/12 09:03																			Page of
0		1	Bureal Ventas 6 40 Campobello Poad M	Mississauga, Ontario C	anada L5N 2L8 T	el:(905) 817-57	00 Toll-free:800-	563-6266 Fax:	(905) 817-57	77 www.l	bvna.com					Cł	123 200			
B U V E	REAU RITAS		DUL																	
	#07000	IN\					REPOR	RT TO:					PROJEC	T INFORMA	TION:		- NONT-2024-09-2223			
Compan	y Name: #37360 Account	Envisior ts Pavable	Consultants Ltd.		Company Na	me: Rob Byr	ers				Qu	Quotation #: 035		035435						ottle Order #:
Attention	40-6415	5 Northwes	st Drive		Attention: Address:	1100 091					P.C Pro	D. #:	23-03	58						1011742
	Mississa	auga ON L	_4V 1X1								Pro	oject Name:						COC #:		Project Manager:
Tel:	(888) 59	97-6083	Fax:	F	Tel:	rhyora	onvisioncon	Fax:			Sit	e #:	0	11	1.00					Ashton Gibson
Email:								Sultanto.ca	enconstantion antion and		Sa ANALY	mpled By: SIS REQUES	TED (PLEASE B	E SPECIFIC	<u>ן אינ ט</u>		_	C#1011742-01-01 Turnaround Tir	me (TAT) Re	uired:
	SUBMIT	TED ON TH	E BUREAU VERITAS	DRINKING WAT	ER CHAIN OF	CUSTODY	NO31 BL											Please provide advar	nce notice for	ush projects
	Regulation 153 (201	1)	0	ther Regulations		Special Ins	tructions	circle	2021								Regular (S (will be applie	tandard) TAT: d if Rush TAT is not specifie	ed);	
Table	1 Res/Park	Medium/	Fine CCME	Sanitary Sewer Byla	v .			ase o Cr V	ewer								Standard TAT	= 5-7 Working days for mo	ost tests	K
Table	2 Ind/Comm 3 Agri/Other	For RSC		Unicipality	K			-1g /	S E								Please note: days - contac	Standard TAT for certain tes t your Project Manager for c	sts such as BOi details.) and Dioxins/Furans are > 5
Table				Reg 406 Table				ered als / I	& Sto								Job Specifi	c Rush TAT (if applies to	entire submis	sion)
	Ť		Other					d Filt Meta	nitary								Date Require Rush Confirm	d: nation Number:	Time	Required:
	Inclu	de Criteria	on Certificate of Analy	vsis (Y/N)?	-	0		Fiel	ork Sa 22)								# of Bottles		(cal	lab for #)
	Sample Barcode La	abei	Sample (Location) ide	nuncation Dat	e Sampled	ime Sampled	Matrix	.1	7 1								11		Commer	
1			BHZ-1	24	109/11	6.00	GW	NO	X								6			
2		14																		
																				- New York Contractor
3																				
4																				
			n																	
5																				
6						2														
	6							·												
7																				
8																			5	
																	_			
9																				
10																				
	+ DELINOUTE	IED BY. (C-	naturo/Print)	Date: /VV/MM/Dr)) Time		RECEIVED	Y: (Signature)	Print)		Date: /VV/MM		Time	# jare ···	brs hes		Labora	ton Use Only		
		Hord M	An	29/09/17	9:00		AECLIVED B	A	in		JUMID G	41	0907	not sub	mitted	Time Sensitive	Tentherati	ure (%C), on/Recei	Custody Sea	Yes Ng
	2.4/V.1	NOC WISS	Car								Ve 1. 1,	The second			1 10		71		Present Intact	
* UNLESS ACKNOW	OTHERWISE AGREE	ED TO IN WRITCEPTANCE O	TING, WORK SUBMITTED OF OUR TERMS WHICH ARE	ON THIS CHAIN OF CU AVAILABLE FOR VIEV	STODY IS SUBJE	CT TO BUREAU	VERITAS'S STAN	DARD TERMS	AND CONDIT	OC-TERM	IGNING OF THIS MS-AND-CONDI	CHAIN OF C	USTODY DOCUM	IENT IS					White: Bu	reau Veritas Yellow: Cl
* IT IS TH	E RESPONSIBILITY O	OF THE RELIN	QUISHER TO ENSURE THE	ACCURACY OF THE	CHAIN OF CUSTO	DY RECORD. A	N INCOMPLETE C	HAIN OF CUST	ODY MAY R	ESULT IN	N ANALYTICAL 1	TAT DELAYS.			SAMPLES	MUST BE KEPT C UNTIL DELIN	COOL (< 10° C) I /ERY TO BUREA	FROM TIME OF SAMPLIN U VERITAS	G	
** SAMPL	E CONTAINER, PRES	ERVATION, F	IOLD TIME AND PACKAGE	INFORMATION CAN E	E VIEWED AT W	W.BVNA.COM/	ENVIRONMENTAL	-LABORATOR	ES/RESOUR	CES/CHA	AIN-CUSTODY-F	ORMS-COCS	5.			1 U A				
									Bur	eau Verita	as Canada (2019) Inc.								*

Exceedance Summary Table – York Sanitary SUB 2021

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summary ta applicable regulatory guideli	ble is for information purp ines.	oses only and should not b	e considered a comprehe	nsive listing o	or statement of co	onformance to

Exceedance Summary Table – York Storm SUB 2021

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS		
BH2-1	ACQA44-06	Total Suspended Solids	15	95	10	mg/L		
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to								
applicable regulatory guideling	nes.							

Your Project #: 23-0358 Your C.O.C. #: 960404-01-01

Attention: Sam Harding

EnVision Consultants Ltd. 40-6415 Northwest Drive Mississauga, ON CANADA L4V 1X1

> Report Date: 2023/11/07 Report #: R7900783 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3X3848 Received: 2023/10/25, 20:20

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
ABN Compounds in Water by GC/MS	1	2023/10/30	2023/10/31	CAM SOP-00301	EPA 8270 m
Carbonaceous BOD	1	2023/10/26	2023/11/01	CAM SOP-00427	SM 23 5210B m
Total Cyanide	1	2023/10/26	2023/10/26	CAM SOP-00457	OMOE E3015 5 m
Fluoride	1	2023/10/26	2023/10/27	CAM SOP-00449	SM 23 4500-F C m
Mercury in Water by CVAA	1	2023/11/01	2023/11/01	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	1	2023/10/31	2023/10/31	CAM SOP-00447	EPA 6020B m
Total Nonylphenol in Liquids by HPLC	1	2023/10/29	2023/10/31	CAM SOP-00313	In-house Method
Nonylphenol Ethoxylates in Liquids: HPLC	1	2023/10/29	2023/10/31	CAM SOP-00313	Bureau Veritas
Animal and Vegetable Oil and Grease	1	N/A	2023/11/03	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2023/11/02	2023/11/03	CAM SOP-00326	EPA1664B m,SM5520B m
Polychlorinated Biphenyl in Water	1	2023/10/27	2023/10/30	CAM SOP-00309	EPA 8082A m
рН	1	2023/10/26	2023/10/27	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2023/10/30	CAM SOP-00444	OMOE E3179 m
Sulphate by Automated Turbidimetry	1	N/A	2023/10/31	CAM SOP-00464	SM 23 4500-SO42- E m
Total Kjeldahl Nitrogen in Water	1	2023/10/27	2023/10/31	CAM SOP-00938	OMOE E3516 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2023/11/02	2023/11/03	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	1	2023/11/01	2023/11/03	CAM SOP-00428	SM 23 2540D m
Volatile Organic Compounds in Water	1	N/A	2023/10/28	CAM SOP-00228	EPA 8260D

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless

Page 1 of 13

Your Project #: 23-0358 Your C.O.C. #: 960404-01-01

Attention: Sam Harding

EnVision Consultants Ltd. 40-6415 Northwest Drive Mississauga, ON CANADA L4V 1X1

> Report Date: 2023/11/07 Report #: R7900783 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3X3848

Received: 2023/10/25, 20:20

otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Ashton Gibson, Project Manager Email: Ashton.Gibson@bureauveritas.com Phone# (905)817-5765

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

YORK SANITARY & STORM SEWER (2021-102)

Bureau Veritas ID				XKF281			XKF281		
Sampling Date				2023/10/25 11:00			2023/10/25 11:00		
COC Number				960404-01-01			960404-01-01		
	UNITS	Criteria	Criteria-2	BHS-2	RDL	QC Batch	BHS-2 Lab-Dup	RDL	QC Batch
Calculated Parameters									
Total Animal/Vegetable Oil and Grease	mg/L	-	150	<0.50	0.50	9007752			
Inorganics							•		
Total Carbonaceous BOD	mg/L	15	300	<2	2	9010272			
Fluoride (F-)	mg/L	-	10	0.11	0.10	9008737			
Total Kjeldahl Nitrogen (TKN)	mg/L	1	100	<0.10	0.10	9012498			
рН	рН	6.0:9.0	6.0:10.5	7.69		9008745			
Phenols-4AAP	mg/L	0.008	1	<0.0010	0.0010	9015629			
Total Suspended Solids	mg/L	15	350	370	10	9020722	370	10	9020722
Dissolved Sulphate (SO4)	mg/L	-	1500	22	1.0	9010008			
Total Cyanide (CN)	mg/L	0.020	2	<0.0050	0.0050	9004275			
Petroleum Hydrocarbons									
Total Oil & Grease	mg/L	-	-	<0.50	0.50	9025175			
Total Oil & Grease Mineral/Synthetic	mg/L	-	15	<0.50	0.50	9025179			
Miscellaneous Parameters									
Nonylphenol Ethoxylate (Total)	mg/L	-	0.2	<0.025	0.025	9014371			
Nonylphenol (Total)	mg/L	-	0.02	<0.001	0.001	9014369			
Metals									
Mercury (Hg)	mg/L	0.0004	0.01	<0.00010	0.00010	9020961			
Total Aluminum (Al)	ug/L	-	50000	3000	4.9	9017288	2900	4.9	9017288
Total Antimony (Sb)	ug/L	-	5000	<0.50	0.50	9017288	<0.50	0.50	9017288
Total Arsenic (As)	ug/L	20	1000	1.2	1.0	9017288	1.2	1.0	9017288
Total Cadmium (Cd)	ug/L	8	700	<0.090	0.090	9017288	<0.090	0.090	9017288
Total Chromium (Cr)	ug/L	80	2000	5.6	5.0	9017288	5.5	5.0	9017288
Total Cobalt (Co)	ug/L	-	5000	1.7	0.50	9017288	1.8	0.50	9017288
Total Copper (Cu)	ug/L	50	3000	7.0	0.90	9017288	6.7	0.90	9017288
Total Lead (Pb)	ug/L	120	1000	2.3	0.50	9017288	2.3	0.50	9017288
Total Manganese (Mn)	ug/L	150	5000	180	2.0	9017288	180	2.0	9017288
Total Molybdenum (Mo)	ug/L	-	5000	1.4	0.50	9017288	1.4	0.50	9017288
Total Nickel (Ni)	ug/L	80	2000	4.8	1.0	9017288	5.0	1.0	9017288
No Fill No Exceedance									
Grey Exceeds 1 criter	ria policy	//level							
Black Exceeds both c	riteria/le	evels							
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
Lab-Dup = Laboratory Initiated Duplicate	2								

Criteria: Regional Municipality of York By-Law No 2021-102, Limits for Storm Sewer/Land Drainage Discharge

Criteria-2: Regional Municipality of York By-Law No 2021-102, Limits for Sanitary Sewer Discharge

YORK SANITARY & STORM SEWER (2021-102)

Bureau Veritas ID					XKF281			XKF281		
Sampling Date					2023/10/25 11:00			2023/10/25 11:00		
COC Number					960404-01-01			960404-01-01		
		UNITS	Criteria	Criteria-2	BHS-2	RDL	QC Batch	BHS-2 Lab-Dup	RDL	QC Batch
Total Phosphorus (P)		ug/L	400	10000	240	100	9017288	230	100	9017288
Total Selenium (Se)		ug/L	20	1000	<2.0	2.0	9017288	<2.0	2.0	9017288
Total Silver (Ag)		ug/L	120	5000	<0.090	0.090	9017288	<0.090	0.090	9017288
Total Tin (Sn)		ug/L	-	5000	<1.0	1.0	9017288	<1.0	1.0	9017288
Total Titanium (Ti)		ug/L	-	5000	140	5.0	9017288	140	5.0	9017288
Total Zinc (Zn)		ug/L	40	2000	12	5.0	9017288	11	5.0	9017288
Semivolatile Organics										
Bis(2-ethylhexyl)phthalat	e	ug/L	8.8	12	<2.0	2.0	9014990	<2.0	2.0	9014990
Di-N-butyl phthalate		ug/L	15.0	80	<2.0	2.0	9014990	<2.0	2.0	9014990
Volatile Organics										
Benzene		ug/L	2.0	10	<0.20	0.20	9009703			
Chloroform		ug/L	2.0	40	<0.20	0.20	9009703			
1,2-Dichlorobenzene		ug/L	5.6	50	<0.40	0.40	9009703			
1,4-Dichlorobenzene		ug/L	6.8	80	<0.40	0.40	9009703			
cis-1,2-Dichloroethylene		ug/L	5.6	4000	<0.50	0.50	9009703			
trans-1,3-Dichloropropen	ne	ug/L	5.6	140	<0.40	0.40	9009703			
Ethylbenzene		ug/L	2.0	160	<0.20	0.20	9009703			
Methylene Chloride(Dich	loromethane)	ug/L	5.2	2000	<2.0	2.0	9009703			
Methyl Ethyl Ketone (2-B	utanone)	ug/L	-	8000	<10	10	9009703			
Styrene		ug/L	-	200	<0.40	0.40	9009703			
1,1,2,2-Tetrachloroethan	е	ug/L	17.0	1400	<0.40	0.40	9009703			
Tetrachloroethylene		ug/L	4.4	1000	<0.20	0.20	9009703			
Toluene		ug/L	2.0	270	<0.20	0.20	9009703			
Trichloroethylene		ug/L	8.0	400	<0.20	0.20	9009703			
p+m-Xylene		ug/L	-	-	<0.20	0.20	9009703			
o-Xylene		ug/L	-	-	<0.20	0.20	9009703			
Total Xylenes		ug/L	4.4	1400	<0.20	0.20	9009703			
PCBs		-								-
Total PCB		ug/L	0.4	1	<0.05	0.05	9013125			
No Fill	No Exceedance									
Grey	Exceeds 1 criter	ia policy	/level							
Black	Exceeds both cr	iteria/le	vels							
RDL = Reportable Detecti	on Limit									
QC Batch = Quality Contr	ol Batch									
Lab-Dup = Laboratory Init	tiated Duplicate									
Criteria: Regional Munici	pality of York By	-Law No	2021-10	02, Limits fo	r Storm Sewer/L	and Drain	nage Discha	arge		
riteria-2: Regional Municipality of York By-Law No 2021-102, Limits for Sanitary Sewer Discharge										

YORK SANITARY & STORM SEWER (2021-102)

Bureau Veritas ID					XKF281			XKF281		
Sampling Date					2023/10/25 11:00			2023/10/25 11:00		
COC Number					960404-01-01			960404-01-01		
		UNITS	Criteria	Criteria-2	BHS-2	RDL	QC Batch	BHS-2 Lab-Dup	RDL	QC Batch
Surrogate Recovery (%	.)	-	<u> </u>	<u>.</u>			<u>.</u>			
2,4,6-Tribromophenol		%	-	-	30		9014990	28		9014990
2-Fluorobiphenyl		%	-	-	59		9014990	58		9014990
2-Fluorophenol		%	-	-	18		9014990	17		9014990
D14-Terphenyl		%	-	-	94		9014990	99		9014990
D5-Nitrobenzene		%	-	-	56		9014990	55		9014990
D5-Phenol		%	-	-	15		9014990	14		9014990
Decachlorobiphenyl		%	-	-	92		9013125			
4-Bromofluorobenzene	2	%	-	-	104		9009703			
D4-1,2-Dichloroethane		%	-	-	108		9009703			
D8-Toluene		%	-	-	93		9009703			
No Fill	No Exceedance									
Grey Exceeds 1 criteria policy/level										
Black Exceeds both criteria/levels										
RDL = Reportable Deter	ction Limit									
QC Batch = Quality Con	trol Batch									

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Regional Municipality of York By-Law No 2021-102, Limits for Storm Sewer/Land Drainage Discharge

Criteria-2: Regional Municipality of York By-Law No 2021-102, Limits for Sanitary Sewer Discharge

TEST SUMMARY

Bureau Veritas ID: Sample ID: Matrix:	XKF281 BHS-2 Water					Collected: Shipped: Received:	2023/10/25 2023/10/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
ABN Compounds in Wate	r by GC/MS	GC/MS	9014990	2023/10/30	2023/10/31	Kathy Horv	vat

ABN Compounds in Water by GC/MS	GC/MS	9014990	2023/10/30	2023/10/31	Kathy Horvat
Carbonaceous BOD	DO	9010272	2023/10/26	2023/11/01	Nusrat Naz
Total Cyanide	SKAL/CN	9004275	2023/10/26	2023/10/26	Prgya Panchal
Fluoride	ISE	9008737	2023/10/26	2023/10/27	Nachiketa Gohil
Mercury in Water by CVAA	CV/AA	9020961	2023/11/01	2023/11/01	Gagandeep Rai
Total Metals Analysis by ICPMS	ICP/MS	9017288	2023/10/31	2023/10/31	Azita Fazaeli
Total Nonylphenol in Liquids by HPLC	LC/FLU	9014369	2023/10/29	2023/10/31	Furneesh Kumar
Nonylphenol Ethoxylates in Liquids: HPLC	LC/FLU	9014371	2023/10/29	2023/10/31	Furneesh Kumar
Animal and Vegetable Oil and Grease	BAL	9007752	N/A	2023/11/03	Automated Statchk
Total Oil and Grease	BAL	9025175	2023/11/02	2023/11/03	Kishan Patel
Polychlorinated Biphenyl in Water	GC/ECD	9013125	2023/10/27	2023/10/30	Akruti Patel
рН	AT	9008745	2023/10/26	2023/10/27	Nachiketa Gohil
Phenols (4AAP)	TECH/PHEN	9015629	N/A	2023/10/30	Chloe Pollock
Sulphate by Automated Turbidimetry	KONE	9010008	N/A	2023/10/31	Alina Dobreanu
Total Kjeldahl Nitrogen in Water	SKAL	9012498	2023/10/27	2023/10/31	Rajni Tyagi
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	9025179	2023/11/02	2023/11/03	Kishan Patel
Total Suspended Solids	BAL	9020722	2023/11/01	2023/11/03	Shaneil Hall
Volatile Organic Compounds in Water	GC/MS	9009703	N/A	2023/10/28	Hai Son Tran

Bureau Veritas ID:	XKF281 Dup
Sample ID:	BHS-2
Matrix:	Water

Collected:	2023/10/25
Shipped:	
Received:	2023/10/25

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
ABN Compounds in Water by GC/MS	GC/MS	9014990	2023/10/30	2023/10/31	Kathy Horvat
Total Metals Analysis by ICPMS	ICP/MS	9017288	2023/10/31	2023/10/31	Azita Fazaeli
Total Suspended Solids	BAL	9020722	2023/11/01	2023/11/03	Shaneil Hall

GENERAL COMMENTS

Results relate only to the items tested.

Page 7 of 13 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

EnVision Consultants Ltd. Client Project #: 23-0358 Sampler Initials: SH

			Matrix Spike		SPIKED	SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits	
9009703	4-Bromofluorobenzene	2023/10/28	104	70 - 130	104	70 - 130	105	%					
9009703	D4-1,2-Dichloroethane	2023/10/28	109	70 - 130	104	70 - 130	105	%					
9009703	D8-Toluene	2023/10/28	98	70 - 130	99	70 - 130	95	%					
9013125	Decachlorobiphenyl	2023/10/30	79	60 - 130	80	60 - 130	81	%					
9014990	2,4,6-Tribromophenol	2023/10/30	79	10 - 130	78	10 - 130	54	%					
9014990	2-Fluorobiphenyl	2023/10/30	74	30 - 130	72	30 - 130	73	%					
9014990	2-Fluorophenol	2023/10/30	41	10 - 130	44	10 - 130	36	%					
9014990	90 D14-Terphenyl 2023		88	30 - 130	95	30 - 130	89	%					
9014990	D5-Nitrobenzene	2023/10/30	80	30 - 130	90	30 - 130	80	%					
9014990	D5-Phenol	2023/10/30	26	10 - 130	29	10 - 130	25	%					
9004275	Total Cyanide (CN)	2023/10/26	109	80 - 120	102	80 - 120	<0.0050	mg/L	NC	20			
9008737	Fluoride (F-)	2023/10/27	104	80 - 120	95	80 - 120	<0.10	mg/L	9.8	20			
9008745	рН	2023/10/27			102	98 - 103			0.86	N/A			
9009703	1,1,2,2-Tetrachloroethane	2023/10/28	126	70 - 130	106	70 - 130	<0.40	ug/L	NC	30			
9009703	1,2-Dichlorobenzene	2023/10/28	104	70 - 130	96	70 - 130	<0.40	ug/L	NC	30			
9009703	1,4-Dichlorobenzene	2023/10/28	110	70 - 130	106	70 - 130	<0.40	ug/L	NC	30			
9009703	Benzene	2023/10/28	98	70 - 130	89	70 - 130	<0.20	ug/L	NC	30			
9009703	Chloroform	2023/10/28	114	70 - 130	102	70 - 130	<0.20	ug/L	4.0	30			
9009703	cis-1,2-Dichloroethylene	2023/10/28	107	70 - 130	95	70 - 130	<0.50	ug/L	NC	30			
9009703	Ethylbenzene	2023/10/28	95	70 - 130	89	70 - 130	<0.20	ug/L	NC	30			
9009703	Methyl Ethyl Ketone (2-Butanone)	2023/10/28	122	60 - 140	100	60 - 140	<10	ug/L					
9009703	Methylene Chloride(Dichloromethane)	2023/10/28	116	70 - 130	102	70 - 130	<2.0	ug/L	NC	30			
9009703	o-Xylene	2023/10/28	87	70 - 130	83	70 - 130	<0.20	ug/L	NC	30			
9009703	p+m-Xylene	2023/10/28	100	70 - 130	95	70 - 130	<0.20	ug/L	NC	30			
9009703	Styrene	2023/10/28	111	70 - 130	104	70 - 130	<0.40	ug/L					
9009703	Tetrachloroethylene	2023/10/28	100	70 - 130	94	70 - 130	<0.20	ug/L	NC	30			
9009703	Toluene	2023/10/28	96	70 - 130	88	70 - 130	<0.20	ug/L	NC	30			
9009703	Total Xylenes	2023/10/28					<0.20	ug/L	NC	30			
9009703	trans-1,3-Dichloropropene	2023/10/28	104	70 - 130	88	70 - 130	<0.40	ug/L	NC	30			
9009703	Trichloroethylene	2023/10/28	104	70 - 130	97	70 - 130	<0.20	ug/L	NC	30			
9010008	Dissolved Sulphate (SO4)	2023/10/31	NC	75 - 125	99	80 - 120	<1.0	mg/L	0.50	20			

Page 8 of 13

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT(CONT'D)

EnVision Consultants Ltd. Client Project #: 23-0358 Sampler Initials: SH

			Matrix	Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits	
9010272	Total Carbonaceous BOD	2023/11/01					<2	mg/L	NC	30	93	85 - 115	
9012498	Total Kjeldahl Nitrogen (TKN)	2023/11/01	NC	80 - 120	98	80 - 120	<0.10	mg/L	2.6	20	102	80 - 120	
9013125	Total PCB	2023/10/30	89	60 - 130	95	60 - 130	<0.05	ug/L	NC	40			
9014369	Nonylphenol (Total)	2023/10/31	111	50 - 130	111	50 - 130	< 0.001	mg/L	NC	40			
9014371	Nonylphenol Ethoxylate (Total)	2023/10/31	98	50 - 130	94	50 - 130	<0.025	mg/L	NC	40			
9014990	Bis(2-ethylhexyl)phthalate	2023/10/31	76	30 - 130	75	30 - 130	<2.0	ug/L	NC	40			
9014990	Di-N-butyl phthalate	2023/10/31	78	30 - 130	84	30 - 130	<2.0	ug/L	NC	40			
9015629	Phenols-4AAP	2023/10/30	104	80 - 120	101	80 - 120	<0.0010	mg/L	0	20			
9017288	Total Aluminum (Al)	2023/10/31	NC	80 - 120	98	80 - 120	<4.9	ug/L	2.4	20			
9017288	Total Antimony (Sb)	2023/10/31	102	80 - 120	102	80 - 120	<0.50	ug/L	NC	20			
9017288	Total Arsenic (As)	2023/10/31	95	80 - 120	96	80 - 120	<1.0	ug/L	3.2	20			
9017288	Total Cadmium (Cd)	2023/10/31	95	80 - 120	95	80 - 120	<0.090	ug/L	NC	20			
9017288	Total Chromium (Cr)	2023/10/31	93	80 - 120	95	80 - 120	<5.0	ug/L	2.5	20			
9017288	Total Cobalt (Co)	2023/10/31	93	80 - 120	96	80 - 120	<0.50	ug/L	5.5	20			
9017288	Total Copper (Cu)	2023/10/31	93	80 - 120	96	80 - 120	<0.90	ug/L	3.9	20			
9017288	Total Lead (Pb)	2023/10/31	90	80 - 120	94	80 - 120	<0.50	ug/L	0.86	20			
9017288	Total Manganese (Mn)	2023/10/31	92	80 - 120	96	80 - 120	<2.0	ug/L	0.27	20			
9017288	Total Molybdenum (Mo)	2023/10/31	100	80 - 120	99	80 - 120	<0.50	ug/L	2.0	20			
9017288	Total Nickel (Ni)	2023/10/31	92	80 - 120	96	80 - 120	<1.0	ug/L	4.9	20			
9017288	Total Phosphorus (P)	2023/10/31	95	80 - 120	93	80 - 120	<100	ug/L	2.9	20			
9017288	Total Selenium (Se)	2023/10/31	99	80 - 120	101	80 - 120	<2.0	ug/L	NC	20			
9017288	Total Silver (Ag)	2023/10/31	93	80 - 120	94	80 - 120	<0.090	ug/L	NC	20			
9017288	Total Tin (Sn)	2023/10/31	98	80 - 120	97	80 - 120	<1.0	ug/L	NC	20			
9017288	Total Titanium (Ti)	2023/10/31	127 (1)	80 - 120	99	80 - 120	<5.0	ug/L	0.85	20			
9017288	Total Zinc (Zn)	2023/10/31	92	80 - 120	97	80 - 120	<5.0	ug/L	5.6	20			
9020722	Total Suspended Solids	2023/11/03			95	85 - 115	<10	mg/L	0.27	20			
9020961	Mercury (Hg)	2023/11/01	100	75 - 125	109	80 - 120	< 0.00010	mg/L	NC	20			
9025175	Total Oil & Grease	2023/11/03			98	85 - 115	<0.50	mg/L	0.25	25			

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT(CONT'D)

EnVision Consultants Ltd. Client Project #: 23-0358 Sampler Initials: SH

			Matrix	RP	RPD		ndard					
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9025179	Total Oil & Grease Mineral/Synthetic	2023/11/03			96	85 - 115	<0.50	mg/L	0.52	25		
N/A = Not A	pplicable											
Duplicate: P	Paired analysis of a separate portion of the same	sample. Used to	evaluate the	variance in t	the measurem	ient.						
Matrix Spike	: A sample to which a known amount of the ana	lyte of interest h	nas been adde	ed. Used to e	evaluate samp	le matrix inte	erference.					
QC Standard	C Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.											
Spiked Blank	: A blank matrix sample to which a known amou	nt of the analyte	e, usually from	n a second so	ource, has bee	en added. Use	ed to evaluate	method a	ccuracy.			
Method Blar	nk: A blank matrix containing all reagents used ir	the analytical p	procedure. Us	ed to identif	y laboratory c	ontaminatior	า.					
Surrogate: A	A pure or isotopically labeled compound whose b	ehavior mirrors	the analytes of	of interest. l	Jsed to evalua	te extraction	efficiency.					
NC (Matrix S recovery cal	pike): The recovery in the matrix spike was not ca culation (matrix spike concentration was less that	alculated. The ron the native same	elative differe ple concentra	nce betweei ition)	n the concenti	ration in the p	oarent sample	and the s	oike amount w	vas too small	to permit a	reliable
NC (Duplicat	e RPD): The duplicate RPD was not calculated. Th	e concentration	n in the sampl	e and/or du	plicate was to	o low to pern	nit a reliable R	PD calcula	tion (absolute	difference <	<= 2x RDL).	
(1) Matrix Sp	pike exceeds acceptance limits, probable matrix i	nterference										

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Brad Newman, B.Sc., C.Chem., Scientific Service Specialist

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Image: 1000000 TO Image: 1000000 TO Image: 1000000 TO Image: 1000000000000000000000000000000000000	Page of	t-23 20:20	25-Oc ton Gibs	Ash							ovna.com	5777 www.	905) 817-	563-6266 Fax(00 Toll-free 800-	Tel: (905) 817-57	iada L5N 2L/	Ontario Can	ad, Mississauga, O	au Veritas Campobello Ro	Bun 674	
Company New Carbon in Payable Carbon in Payable <th< th=""><th><i>r</i>:</th><th></th><th></th><th></th><th></th><th>RMATION:</th><th>CT INFO</th><th>PROJEC</th><th></th><th></th><th></th><th></th><th></th><th>RT TO:</th><th>REPO</th><th></th><th></th><th></th><th></th><th>TO:</th><th>INVOICE</th><th></th></th<>	<i>r</i> :					RMATION:	CT INFO	PROJEC						RT TO:	REPO					TO:	INVOICE	
Advices Advices <t< td=""><td>Bottle Order #:</td><td>48</td><td>C3X384</td><td></td><td>1.1</td><td>13 Filter</td><td>646</td><td>C256</td><td>n#:</td><td>Quotation</td><td>4.11</td><td></td><td></td><td>n liter y e</td><td>ision</td><td>ame: EN</td><td>Company</td><td>-1-11</td><td></td><td>nsultants Ltd</td><td>#37360 EnVision Co</td><td>Company Name:</td></t<>	Bottle Order #:	48	C3X384		1.1	13 Filter	646	C256	n#:	Quotation	4.11			n liter y e	ision	ame: EN	Company	-1-11		nsultants Ltd	#37360 EnVision Co	Company Name:
Address:		V 651 C	ENI	- 1 10 17				_		P.O. #.	0.010						Attention:				Accounts Payable	Attention:
Term (889) 597-6083 Fac Term Fac Fac Supersonal	960404 Project Managory	COC #-					358	23-03		Project:	1					- <u>- 11-</u>	Address:				Mississaura ON LAV	Address:
Image: Dayables@envisionconsultants.ca Image: Shart Sample for summed by Control on the summed by	i i i i i i i i i i i i i i i i i i i						-	4	lame:	Project N	-	-	-						1.1.1.1.1.1.1	Eau	(888) 597-6083	Tel:
Mode REGULATED DRIVENCE MATERIO NUMETER INTERDED POR HUMAN CONSULTED INTO THE SUBMITTED ON THE BUREAU VARTER CHANNOP CUSTODY The Submitted on the BUREAU VARTER CHANNOP CUSTODY The Submitted on the BUREAU VARTER CHANNOP CUSTODY Provide Statustic Statust	Ashton Gibson	C#960404-01-01		1-1-1-1	6	Hardin	0	Sa	Dur	Site #:	C.0.	ada 1	Sull	Fax:	dine Deal	Shar	Tel: Email:		211-01111-1244	nsultants.ca	payables@envisionco	Email:
Submitted overlage Submitted overlage Character of the submitted overlage Separation 153 (2011) Control registration 153 (2011) <	ne (TAT) Required:	Turnaround Ti			/	CIFIC)	BE SPE	D (PLEASE	EQUESTE	ALYSIS RE	AN	WENT 1	1014	1210ALON	ALIST RE	NSUMPTION	IMAN CO	DEOR HI	ER INTENDED	TER OR WAT	GULATED DRINKING WA	MOE REC
Image: market in the second	ce notice for rush projects	Please provide advar	and the second				1		Τ						ACCI DE	F CUSTODY	CHAIN	G WATER	TAS DRINKING	JREAU VERI	SUBMITTED ON THE B	
Image:	ed:	andard) TAT: Lit Rush TAT is not specifi	Regular (St					1				021-	(c)	rcle)	tructions	Special Ins		ons	Other Regulatio		tion 153 (2011)	Regulat
Table 3 Indicom Coarse Manopatiy <	st tests.	= 5-7 Working days for mo	Standard TAT									ver (2	TSS	⊆ so	nn Stasti		E FIN	wer Bylaw	Sanitary Sew	CCME	Res/Park Medium/Fine	Table 1
Table	ts such as BOD and Dioxins/Furans are > 5	tandard TAT for certain tes	Please note: Si									1 Sev	+ 9/	oleas			S Ann I Y	Bylaw	Storm Sewer	Reg 558.	Ind/Comm Coarse	Table 2
Include Criteria on Certificate of Analysis (YM)? Time Sampled Matrix Matrix </td <td>antim submission)</td> <td>Push TAT (if applies to</td> <td>Job Enerille</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Storr</td> <td>Suec</td> <td>3H /</td> <td></td> <td></td> <td></td> <td>TOCL</td> <td>Municipality</td> <td>MISA</td> <td></td> <td>Table</td>	antim submission)	Push TAT (if applies to	Job Enerille									Storr	Suec	3H /				TOCL	Municipality	MISA		Table
Include Criteria on Certificate of Analysis (YN0)? Page 3 0	Time Required:	Rush TAT (ii applies to	Date Required							F	tary	iry &	npre	ilter				able		Other		
Sample Barcode Label Sample (Location) Identification Data Sample Time Samplet Matrix Page Page <th< td=""><td>(call lab for #)</td><td>ation Number.</td><td>Rush Confirma</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Stor</td><td>Sani</td><td>anite</td><td>- Co</td><td>Me</td><td></td><td></td><td>-</td><td>CONTRACTOR OF</td><td>nalysis (V/N)?</td><td>ertificate of A</td><td>Include Criteria on C</td><td></td></th<>	(call lab for #)	ation Number.	Rush Confirma							Stor	Sani	anite	- Co	Me			-	CONTRACTOR OF	nalysis (V/N)?	ertificate of A	Include Criteria on C	
1 BHS-Z 22/10/25 IVOUND Amount IVOUND Amount IVOUND	Comments		# of Bottles	1						arrie	arrie	ork S 02)	CAp	μ	Matrix	Time Sampled	Samplad	Data) Identification	ample (Location	le Barcode Label	Sampl
B Image: Constraint of the second of the s			1/	_	-	-	-		-			5	œ		~ 1	11/20	Minpied		-	NIC	Ĩ	1
2			10								1		12		(TW	11-Uan	0/25	23/1	L	242-		
3														bin / cm			,	· · · ·			Ter a	2
3																						a section of
4							1		1					all the second								3
4				_		_																
5																						4
a a <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td>+</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>5</td>					+		+	-	-				-					-				5
6																						5
7									-		1	1		TAR DE LY								6
7																						
8																						7
8												-										
9						1.1																8
9			-	_		-	-			-			-					-				
10																						9
* RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time RECEIVED BY: (Signature/Print) Date: (YY/MM/DD) Time # jars used and not submitted					-		1		+			1	-	Constant I								10
RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time # jars used and not submitted Laboratory Use On																						
	Custody Saal Vac Li	tory Use Only	Labora		and ed	jars used an ot submitted	#)	Time		(MM/DD)	Date: (Y		Print)	Y: (Signature/f	RECEIVED		Tim	Y/MM/DD)	Date: (YY	e/Print)	RELINQUISHED BY: (Signatur	
Time Sensitive Temperature (°C) on	Present No	ure (°C) on Recei	Temperati	ime Sensitive	Tir		_	177	X	101	la	~	YA	NC	~1	PM -	5200	10/25	20231		Telming In	
	White: Bureau Varitate Valland	113013	13	ويتباو التحقيق ال	C.M.R.S.S.M.R.	e Martin	UMENT	TODY DO			0.00							NOE CHEST	ED ON THIS CUSIN	WORK SURMIT	WISE AGREED TO IN WRITING	UNLESS OTHER
ICKNOWLEDGMENT AND ACCEPTANCE OF OUR TERMS WHICH ARE AVAILABLE FOR VIEWING AT WWW.BVNA.COM/ENVIRONMENTAL-LABORATORIES/RESOURCES/COC-TERMS-AND-CONDITIONS.	A LA	FROM TIME OF SAMPLIN	0011 < 108 C 1				UNENT	NUDT DOCI	S.	ONDITION	MS-AND-0	COC-TER	SOURCE	RATORIES/RE	ONMENTAL-LAB	ECT TO BUREAU	IG AT WWW.	OR VIEWIN	ARE AVAILABLE FO	TERMS WHICH	ENT AND ACCEPTANCE OF OU	CKNOWLEDGME
TIS THE RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY RECORD. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS.	This	U VERITAS	ERY TO BUREA	UNTIL DELIVI	FLES MUS	SAMPL			DELAYS.	CAL TAT D	ANALYT	RESULT	ODY MA	HAIN OF CUST	NINCOMPLETE	ODY RECORD. A	AIN OF CUS	OF THE CH	THE ACCURACY (IER TO ENSURE	ONSIBILITY OF THE RELINQUIS	T IS THE RESPO

Bureau Veritas Canada (2019) Inc.

Exceedance Summary Table – York Storm SUB 2021

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS			
BHS-2	XKF281-09-Lab Dup	Total Manganese (Mn)	150	180	2.0	ug/L			
BHS-2	XKF281-09	Total Manganese (Mn)	150	180	2.0	ug/L			
BHS-2	XKF281-06	Total Suspended Solids	15	370	10	mg/L			
BHS-2	XKF281-06-Lab Dup	Total Suspended Solids	15	370	10	mg/L			
The exceedance summary table is for information nurnoses only and should not be considered a comprehensive listing or statement of conformance to									

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Exceedance Summary Table – York Sanitary SUB 2021

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS				
BHS-2	XKF281-06	Total Suspended Solids	350	370	10	mg/L				
BHS-2	XKF281-06-Lab Dup	Total Suspended Solids	350	370	10	mg/L				
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.										

APPENDIX G: Construction Dewatering Analysis

	/(*(1'	
8	2 8 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1	
ABORT OF	4 + / 2 5 , 1 (7 \$ 1 . 5 (0 2 9 \$ /	
- and	81'(5*5281' 6(59,&,1* 5(029\$/	
DP NO	352326('3\$9(0(17 &21&5(7(
20 20	= 21(2),1)/8(1&(=2,	
	&+/25,1(7\$1.5(029\$/ =2,	
	00 : \$7(50\$, 1 5(029\$/ = 2,	
1	$00 \ 6\$1.7\$5 < \$1' \ 67250 \ 5(029\$/=2)$	
i.	9\$/9(
h	$00 \ 6 \ 1 \ 7 \ 5 \ 4 \ 7 \ 5 \ 7 \ 7$	
1	&216758&7,21 =2,	
l		
1		
Name of		
102		
COCCH		
N. 13		
100		
122		
-		
	'(:\$7(5,1*,1'8&('=21(2),1)/8(1&(:(//)\$&,/,7	< 8
	^{352-(&7} +<'52*(2/2*,&\$/,19(67,*\$7,2)	
	:(//)\$5,6 \$9(18(:(// + *+`\$<	
	12%/(721 217\$5,2	
	&/,(17	
	(72 (1*,1((5,1*	
	352-(&7 12 '\$7(35(3\$5('%k\$33529('%d).*85(
V	UHV 0\$< 73 5% *	

No. of Contraction of	/(*(1'	
	6,7 %281'\$5< :(//	
200		
228	352 26(' 73)22735 17	
Con Con		
Start Start	352326(' 6\$1,7\$5< /,1(
1	352326(':\$7(50\$,1	
/	75(\$70(17 3/\$17 &216758&7,21 =2,	
d		
100		
Ser and a ser a se		
-TING		
11		
0		
1		
NOON		
1000		
Contraction of the		
a difference		
No.		
N. Start		
100		
100		
ł		
- INV		
77		
ł		
S.		
-	7.7/(
1		-
A LOUIS	'(:\$7(5,1*,1'8&('=21(2),1)/8(1&(:(//)\$&,/,7)	< 8
1		
	^{352-(&7} +<'52*(2/2*,&\$/,19(67,*\$7,2	
- Contraction	:(//)\$5,6 \$9(18(
a longer	(// +, *+: \$< 12%/(721 217\$5.2)	
1		
02.4	352-(&7 12 '\$7(35(3\$5(' % \$33529(' % \$,*85(
N	JHV -\$18\$5< 73 5% *	
-		

ENVISION

CONSULTANTS LTD

Dewatering Source Information											
Source #	Description	UT	M 17N Coord	linates	Dimensions (m)						
Jource #	Description	Northing	Easting	Elevation	Width	Length	Depth				
1	Chlorine Tank	4861699	608023	264.60	7.00	18.00	3.80				
2	200mm WM	4861699	608023	265.00	3.00	30.00	2.50				
3	150mm Sani/Storm	4861699	608023	265.00	3.00	24.00	1.90				

	Source Outputs										
>	Surface Area (m²)	Volume (m ³)	R _{eff} (m)								
	126	478.8	6.3								
	90	225.0	5.4								
	72	136.8	4.8								
	-										

Where;		
R _{eff} = Effective radius of th	e excavat	ion (m)
a = width of excavation (n	n)	
b = length of excavation (m)	
	1	1.

 $R_{eff} = \sqrt{\frac{ab}{\pi}}$

× . . . *

Effective Radius Approximation

Hydraulic Parameters										
Description		Source								
Description		1		2	:	3				
Max. Water Table Elevation (m)	264.3	masl	264.3	masl	263.8	masl		masl		
Aquifer Saturated Thickness (H)	9.3	m	9.3	m	8.8	m		m		
Target Dewatered Elev. (m)	257.90	masl	261.5	masl	262.1	masl		masl		
Dewatered Aquifer Saturated Thickness (h)	2.90	m	6.5	m	7.1	m		m		
Hydraulic Conductivity (K)	1.00E-07	m/sec	7.40E-07	m/sec	7.40E-07	m/sec		m/sec		
Base of Aquifer (m)	255.00	masl	255.00	masl	255.00	masl		masl		
Ground Elevation (m)	265.1	masl	266	masl	265.3	masl		masl		

	Dewatering Assessment											
Source #	Н	h	К	r _{eff}	R _{scih}	R ₀	R ₀ _ass	Q	S. Eactor	Q		
Source #	(m)	(m)	(m/sec)	(m)	(m)	(m)	(m)	(m3/day)	S. Factor	(L/day)		
1	9.3	2.9	1.00E-07	6.3	6.1	12.4	18.5	2.0	2	4,000		
2	9.3	6.5	7.40E-07	5.4	7.2	12.6	19.8	6.8	2	13,600		
3	8.8	7.1	7.40E-07	4.8	4.4	9.2	13.6	5.2	2	10,400		

								Dewatering Discharge Rates (Maximum		
Stormwater Contribution			Storage Calculation			Pumpi	ng Time	Expected with Stormwater)		
	Precipitation	Volume	Volume s Sy V _s 7 14	Q (7 Days		Q (14 Days				
Source				Sy	۷ _S	,	14	Source	Pumping)	Pumping)
	(mm/day)	(m ³ /day)	(m)	Unitless	(m3)	(L/day)	(L/day)		(L/day)	(L/day)
1	29	3.65	6	0.05	110	15,700	7,857	1	23,350	15,500
2	29	2.61	3	0.05	70	10,000	5,000	2	16,210	21,200
3	29	2.09	2	0.05	20	2,900	1,429	3	12,490	13,900

Where;

Kyrieleis, W., Sichardt, W. – Grundwasserabsenkung bei Fundierungsarbeiten, Springer, Berlin, 1930

Where; R_o = Radius of influence(m) (H-h) = change in aquifer saturated thickness (m) K =hydraulic conductivity(m/sec)

ENVISION

CONSULTANTS LTD

Dewatering Source Information											
Source #	Description	UT	M 17N Coord	linates	Dimensions (m)						
Source #	Description	Northing	Easting	Elevation	Width	Length	Depth				
1	Valve Chamber	4861699	608023	265.00	3.00	3.00	7.00				
2	250mm PVC Pipe	4861699	608023	265.00	3.00	45.00	3.00				
3	150/200mm San Sewer	4861699	608023	265.00	3.00	60.00	3.00				

Source Outputs										
Surface Area (m²)	Volume (m ³)	R _{eff} (m)								
9.0	63.0	1.7								
135.0	405.0	6.6								
180.0	540.0	7.6								
-										

Effective Radius Approximation

 $R_{eff} = \sqrt{\frac{ab}{\pi}}$

Where; R_{eff} = Effective radius of the excavation (m) a = width of excavation (m) b = length of excavation (m)

Radial Flow to Source (Unconfined)

Where;

Q = discharge volume (m³/day)

K = hydraulic conductivity (m/day)

H = saturated aquifer thickness (m)

h = dewatered aquifer thickness (m) R_o = Radius of influence (m)

R_{eff} = Effective radius of the excavation (m)

Sources:

Construction dewatering and groundwater control, Powers, J.P., 2007 Kyrieleis, W., Sichardt, W. – Grundwasserabsenkung bei Fundierungsarbeiten, Springer, Berlin, 1930

Hydraulic Parameters										
Description		Source								
Description	1			2		3				
Max. Water Table Elevation (m)	264.3	masl	264.3	masl	264	masl		masl		
Aquifer Saturated Thickness (H)	9.3	m	9.3	m	9	m		m		
Target Dewatered Elev. (m)	260.50	masl	260.9	masl	259.1	masl		masl		
Dewatered Aquifer Saturated Thickness (h)	5.50	m	5.9	m	4.1	m		m		
Hydraulic Conductivity (K)	1.00E-07	m/sec	7.40E-07	m/sec	7.40E-07	m/sec		m/sec		
Base of Aquifer (m)	255.00	masl	255.00	masl	255.00	masl		masl		
Ground Elevation (m)	265.1	masl	266	masl	265	masl		masl		

	Dewatering Assessment											
Source #	Н	h	К	r _{eff}	R _{scih}	R ₀	R ₀ _ass	Q	S. Eactor	Q		
Source #	(m)	(m)	(m/sec)	(m)	(m)	(m)	(m)	(m3/day)	S. Factor	(L/day)		
1	9.3	5.5	1.00E-07	1.7	3.6	5.3	8.9	0.9	2	1,800		
2	9.3	5.9	7.40E-07	6.6	8.8	15.3	24.1	8.0	2	15,900		
3	9	4.1	7.40E-07	7.6	12.6	20.2	32.9	8.8	2	17,600		

Stormwater Contribution			St	orage Calculati	on	Pumpi	ng Time	Dewatering Discharge Rates (Maximum Expected with Stormwater)			
Source	Precipitation	Volume	S	Sy	Vs	7	14	Source	Q (7 Days Pumping)	Q (14 Days Pumping)	
	(mm/day)	(m ³ /day)	(m)	Unitless	(m3)	(L/day)	(L/day)		(L/day)	(L/day)	
1	29	0.26	3.8	0.05	5	700	357	1	2,760	2,400	
2	29	3.92	3.4	0.05	140	20,000	10,000	2	39,820	29,800	
3	29	5.22	5	0.05	340	48,600	24,286	3	71,420	47,100	

$$R_0 = 3000 * (H - h)\sqrt{K}$$

Where; R_o = Radius of influence(m) (H-h) = change in aquifer saturated thickness (m) K =hydraulic conductivity(m/sec)

ENVISION

CONSULTANTS LTD

Dewatering Source Information										
Source #	Description	UT	M 17N Coord	linates	D					
	Description	Northing	Easting	Elevation	Width	Length	Depth			
1	WTP	4861699	608023	265.00	33.00	30.00	13.00			
2	Watermains/Sewers	4861699	608023	265.00	3.00	45.00	3.00			

Source Outputs									
Surface Area (m²)	Volume (m ³)	R _{eff} (m)							
990.0	12870.0	17.8							
135.0	405.0	6.6							

Hydraulic Parameters											
Description	Source										
Description	1		2								
Max. Water Table Elevation (m)	256.0	masl	256.1	masl		masl		masl			
Aquifer Saturated Thickness (H)	7	m	6.1	m		m		m			
Target Dewatered Elev. (m)	251.00	masl	256	masl		masl		masl			
Dewatered Aquifer Saturated Thickness (h)	2.00	m	6	m		m		m			
Hydraulic Conductivity (K)	1.00E-07	m/sec	6.80E-07	m/sec		m/sec		m/sec			
Base of Aquifer (m)	249.00	masl	250.00	masl		masl		masl			
Ground Elevation (m)	261	masl	261	masl		masl		masl			

Dewatering Assessment										
Source #	н	h	К	r _{eff}	R _{scih}	R ₀	R ₀ _ass	Q	6 Eactor	Q
	(m)	(m)	(m/sec)	(m)	(m)	(m)	(m)	(m3/day)	S. Factor	(L/day)
1	7	2	1.00E-07	17.8	4.7	22.5	27.2	2.9	2	5,700
2	6.1	6	6.80E-07	6.6	0.2	6.8	7.1	0.0	2	-

Stormwater Contribution			Storage Calculation			Pumping Time		Dewatering Discharge Rates (Maximum Expected with Stormwater)		
Source	Precipitation	Volume	S	Sy	Vs	7	14	Source	Q (7 Days Pumping)	Q (14 Days Pumping)
	(mm/day)	(m ³ /day)	(m)	Unitless	(m3)	(L/day)	(L/day)		(L/day)	(L/day)
1	29	28.71	5.0	0.05	420	60,000	30,000	1	94,410	64,400
2	29	3.92	0.1	0.05	-	-	-	2	3,920	3,900

Effective Radius Approximation

 $R_{eff} = \sqrt{\frac{ab}{\pi}}$

Where; R_{eff} = Effective radius of the excavation (m) a = width of excavation (m) b = length of excavation (m)

Radial Flow to Source (Unconfined)

Sources:

Where;

Q = discharge volume (m³/day) K = hydraulic conductivity (m/day) H = saturated aquifer thickness (m) h = dewatered aquifer thickness (m) R₀ = Radius of influence (m)

R_{eff} = Effective radius of the excavation (m)

Construction dewatering and groundwater control, Powers, J.P., 2007 Kyrieleis, W., Sichardt, W. – Grundwasserabsenkung bei Fundierungsarbeiten, Springer, Berlin, 1930

$$R_0 = 3000 * (H - h)\sqrt{K}$$

Where; R_o = Radius of influence(m) (H-h) = change in aquifer saturated thickness (m) K =hydraulic conductivity(m/sec)